Number of the records: 1  

CKS1 Germ Line Exclusion Is Essential for the Transition from Meiosis to Early Embryonic Development

  1. 1.
    0512107 - ÚŽFG 2020 RIV US eng J - Journal Article
    Ellederová, Zdeňka - del Rincon, S. - Končická, Markéta - Šušor, Andrej - Kubelka, Michal - Sun, D. - Spruck, C.
    CKS1 Germ Line Exclusion Is Essential for the Transition from Meiosis to Early Embryonic Development.
    Molecular and Cellular Biology. Roč. 39, č. 13 (2019), č. článku UNSP e00590-18. ISSN 0270-7306. E-ISSN 1098-5549
    R&D Projects: GA MŠMT(CZ) LO1609; GA MŠMT EF15_003/0000460; GA ČR GA15-22765S; GA ČR GA18-19395S
    Institutional support: RVO:67985904
    Keywords : CKS * cyclin dependent kinases * developmental biology
    OECD category: Cell biology
    Impact factor: 3.611, year: 2019
    Method of publishing: Open access
    https://mcb.asm.org/content/39/13/e00590-18

    Cell division cycle (cdc) kinase subunit (CKS) proteins bind cyclin-dependent kinases (CDKs) and play important roles in cell division control and development, though their precise molecular functions are not fully understood. Mammals express two closely related paralogs called CKS1 and CKS2, but only CKS2 is expressed in the germ line, indicating that it is solely responsible for regulating CDK functions in meiosis. Using cks2(-/-) knockout mice, we show that CKS2 is a crucial regulator of maturation-promoting factor (MPF, CDK1-cyclin A/B) activity in meiosis. cks2(-/-) oocytes display reduced and delayed MPF activity during meiotic progression, leading to defects in germinal vesicle breakdown (GVBD), anaphase-promoting complex/cyclosome (APC/C) activation, and meiotic spindle assembly. cks2(-/-) germ cells express significantly reduced levels of the MPF components CDK1 and cyclins A1/B1. Additionally, injection of MPF plus CKS2, but not MPF alone, restored normal GVBD in cks2(-/- )oocytes, demonstrating that GVBD is driven by a CKS2-dependent function of MPF. Moreover, we generated cks2(cks1/cks1)( )knock-in mice and found that CKS1 can compensate for CKS2 in meiosis in vivo, but homozygous embryos arrested development at the 2- to 5-cell stage. Collectively, our results show that CKS2 is a crucial regulator of MPF functions in meiosis and that its paralog, CKS1, must be excluded from the germ line for proper embryonic development.
    Permanent Link: http://hdl.handle.net/11104/0302314

     
     
Number of the records: 1  

  This site uses cookies to make them easier to browse. Learn more about how we use cookies.