Number of the records: 1  

Mapping magnetization states in ultrathin films with Dzyaloshinskii-Moriya interaction

  1. 1.
    0509386 - FZÚ 2020 RIV GB eng J - Journal Article
    Kisielewski, J. - Kisielewski, M. - Zablotskyy, Vitaliy A. - Dejneka, Alexandr - Maziewski, A.
    Mapping magnetization states in ultrathin films with Dzyaloshinskii-Moriya interaction.
    New Journal of Physics. Roč. 21, Sep (2019), s. 1-8, č. článku 093022. ISSN 1367-2630. E-ISSN 1367-2630
    R&D Projects: GA MŠMT(CZ) EF16_019/0000760
    Grant - others:OP VVV - SOLID21(XE) CZ.02.1.01/0.0/0.0/16_019/0000760
    Institutional support: RVO:68378271
    Keywords : thin films * micromagnetic simulations * magnetic skyrmions * chiral magnetization
    OECD category: Condensed matter physics (including formerly solid state physics, supercond.)
    Impact factor: 3.539, year: 2019
    Method of publishing: Open access

    To succeed in the next generation of magnetic storages, nanomagnetic structures must be engineered to allow modulation of magnetization amplitude and spatial period. We demonstrate computationally how magnetic nanostructures states (domains with narrow wall, skyrmions, spin spirals, conical spin spirals, and in-plane magnetization configuration) can be designed in ultrathin films with a Dzyaloshinskii–Moriya interaction (DMI) by adjusting two material parameters: perpendicular magnetic anisotropy characterized by the quality factor Q, and reduced DMI constant ${ m{Delta }}$. For a broad range of Q and ${ m{Delta }}$ parameters, the magnetization states are mapped in (Q, ${ m{Delta }}$) diagrams and characterized by the periodicity (p) of spatial distribution of magnetization and the mean value of the square of an out-of-plane normalized magnetization component $langle {m}_{z}^{2} angle $.

    Permanent Link: http://hdl.handle.net/11104/0300149

     
    FileDownloadSizeCommentaryVersionAccess
    0509386.pdf31.1 MBCC licencePublisher’s postprintopen-access
     
Number of the records: 1  

  This site uses cookies to make them easier to browse. Learn more about how we use cookies.