Number of the records: 1  

A role for the auxin precursor anthranilic acid in root gravitropism via regulation of PIN-FORMED protein polarity and relocalisation in Arabidopsis

  1. 1.
    0507912 - ÚEB 2020 RIV US eng J - Journal Article
    Doyle, S. M. - Rigal, A. - Grones, P. - Karady, M. - Barange, D. K. - Majda, M. - Pařízková, Barbora - Karampelias, M. - Zwiewka, M. - Pěnčík, Aleš - Almqvist, F. - Ljung, K. - Novák, Ondřej - Robert, S.
    A role for the auxin precursor anthranilic acid in root gravitropism via regulation of PIN-FORMED protein polarity and relocalisation in Arabidopsis.
    New Phytologist. Roč. 223, č. 3 (2019), s. 1420-1432. ISSN 0028-646X. E-ISSN 1469-8137
    R&D Projects: GA MŠMT(CZ) EF16_019/0000827; GA MŠMT(CZ) LM2015062
    Institutional support: RVO:61389030
    Keywords : anthranilic acid (AA) * Arabidopsis thaliana * auxin transport * PIN polarity * PIN-FORMED proteins * root gravitropism
    OECD category: Biochemistry and molecular biology
    Impact factor: 8.512, year: 2019
    Method of publishing: Open access
    http://dx.doi.org/10.1111/nph.15877

    Distribution of auxin within plant tissues is of great importance for developmental plasticity, including root gravitropic growth. Auxin flow is directed by the subcellular polar distribution and dynamic relocalisation of auxin transporters such as the PIN-FORMED (PIN) efflux carriers, which can be influenced by the main natural plant auxin indole-3-acetic acid (IAA). Anthranilic acid (AA) is an important early precursor of IAA and previously published studies with AA analogues have suggested that AA may also regulate PIN localisation. Using Arabidopsis thaliana as a model species, we studied an AA-deficient mutant displaying agravitropic root growth, treated seedlings with AA and AA analogues and transformed lines to over-produce AA while inhibiting its conversion to downstream IAA precursors. We showed that AA rescues root gravitropic growth in the AA-deficient mutant at concentrations that do not rescue IAA levels. Overproduction of AA affects root gravitropism without affecting IAA levels. Treatments with, or deficiency in, AA result in defects in PIN polarity and gravistimulus-induced PIN relocalisation in root cells. Our results revealed a previously unknown role for AA in the regulation of PIN subcellular localisation and dynamics involved in root gravitropism, which is independent of its better known role in IAA biosynthesis.
    Permanent Link: http://hdl.handle.net/11104/0298877

     
    FileDownloadSizeCommentaryVersionAccess
    2019_Doyle_NEW PHYTOLOGIST_1420.pdf01.4 MBOtheropen-access
     
Number of the records: 1  

  This site uses cookies to make them easier to browse. Learn more about how we use cookies.