Number of the records: 1  

Wavelength dependence of laser plasma interaction related to shock ignition approach

  1. 1.
    0501664 - ÚFP 2019 RIV US eng J - Journal Article
    Pisarczyk, P. - Gus'kov, S. Yu. - Dudžák, Roman - Renner, Oldřich - Batani, D. - Chodukowski, T. - Rusiniak, Z. - Dostál, Jan - Demchenko, N. N. - Rosinski, M. - Parys, P. - Smid, M. - Korneev, Ph. - Krousky, E. - Borodziuk, S. - Badziak, J. - Antonelli, L. - Gizzi, L.A. - Cristoforetti, G. - Koester, P. - Maheut, Y. - Volpe, L. - Baffigi, F. - Levato, T. - Skála, Jiří - Zaras-Szydłowska, A. - Trela, J. - Mancelli, D. - Ullschmied, J. - Pfeifer, Miroslav - Juha, Libor - Krůs, Miroslav - Hřebíček, Jan - Medřík, Tomáš - Jungwirth, K. - Krupka, Michal - Pisarczyk, P.
    Wavelength dependence of laser plasma interaction related to shock ignition approach.
    Laser and Particle Beams. Roč. 36, č. 3 (2018), s. 405-426. ISSN 0263-0346. E-ISSN 1469-803X
    R&D Projects: GA MŠMT(CZ) LD14089; GA MŠMT LM2010014; GA MŠMT(CZ) LM2015083; GA ČR GPP205/11/P712
    EU Projects: European Commission(XE) 633053 - EUROfusion; European Commission(XE) 654148 - LASERLAB-EUROPE
    Grant - others:High Field Initiative (HiFI)(CZ) CZ.02.1.01/0.0/0.0/15 003/0000449; ELI Tools for Advanced Simulation (ELITAS)(CZ) CZ.02.1.01/0.0/0.0/16013/0001793
    Institutional support: RVO:61389021
    Keywords : Absorption mechanisms * fast electrons * femtosecond interferometry * inertial fusion * resonant absorption * shock ignition * shockwave
    OECD category: Optics (including laser optics and quantum optics)
    Impact factor: 1.194, year: 2018
    https://www.cambridge.org/core/journals/laser-and-particle-beams/article/wavelength-dependence-of-laser-plasma-interaction-related-to-shock-ignition-approach/32C52C8D381C8985FDFCB51F0D624B57

    This paper provides a summary of recent research connected with the shock ignition (SI) concept of the inertial confinement fusion which was carried out at PALS. In the experiments, Cu planar targets coated with a thin CH layer were used. Two-beam irradiation experiment was applied to investigate the effect of preliminary produced plasma to shock-wave generation. The 1ω or 3ω main beam with a high intensity >1015 W/cm2 generates shock wave, while the other 1ω beam with the intensity below 1014 W/cm2 creates CH pre-plasma simulating the pre-compressed plasma related to SI. Influence of laser wavelength on absorbed energy transfer to shock wave was studied by means of femtosecond interferometry and measuring the crater volume. To characterize the hot electron and ion emission, two-dimensional (2D) Kα-imaging of Cu plasma and grid collector measurements were used. In single 1ω beam experiments energy transport by fast electrons produced by resonant absorption made a significant contribution to shock-wave pressure. However, two-beam experiments with 1ω main beam show that the pre-plasma is strongly degrading the scalelength which leads to decreasing the fast electron energy contribution to shock pressure. In both the single 3ω beam experiments and the two-beam experiments with the 3ω main beam, do not show any clear influence of fast electron transport on shock-wave pressure. The non-monotonic behavior of the scalelength at changing the laser beam focal radius in both presence and absence of pre-plasma reflects the competition of plasma motion and electron heat conduction under the conditions of one-dimensional and 2D plasma expansion at large and small focal radii, respectively.
    Permanent Link: http://hdl.handle.net/11104/0293658

     
     
Number of the records: 1  

  This site uses cookies to make them easier to browse. Learn more about how we use cookies.