Number of the records: 1  

Mechanism of single-shot damage of Ru thin films irradiated by femtosecond extreme UV free-electron laser

  1. 1.
    0500161 - ÚFP 2019 RIV US eng J - Journal Article
    Milov, I. - Makhotkin, I.A. - Sobierajski, R. - Medvedev, Nikita - Lipp, V. - Chalupský, J. - Sturm, J.M. - Tiedtke, K. - de Vries, G. - Stoermer, M. - Siewert, F. - van de Kruijs, R. - Louis, E. - Jacyna, I. - Jurek, M. - Juha, L. - Hájková, V. - Vozda, V. - Burian, T. - Saksl, K. - Faatz, B. - Keitel, B. - Ploenjes, E. - Schreiber, S. - Toleikis, S. - Loch, R. - Hermann, M. - Strobel, S. - Nienhuys, H.-K. - Gwalt, G. - Mey, T. - Enkisch, H. - Bijkerk, F.
    Mechanism of single-shot damage of Ru thin films irradiated by femtosecond extreme UV free-electron laser.
    Optics Express. Roč. 26, č. 15 (2018), s. 19665-19685. ISSN 1094-4087
    R&D Projects: GA MŠMT EF16_013/0001552
    Institutional support: RVO:61389021
    Keywords : molecular-dynamics * threshold measurements * multilayer optics * lattice-dynamics * metal targets * pulse * ablation * spallation * radiation * surface
    OECD category: Optics (including laser optics and quantum optics)
    Impact factor: 3.561, year: 2018
    https://www.osapublishing.org/oe/abstract.cfm?uri=oe-26-15-19665

    Ruthenium is a perspective material to be used for XUV mirrors at free-electron laser facilities. Yet, it is still poorly studied in the context of ultrafast laser-matter interaction. In this work, we present single-shot damage studies of thin Ru films irradiated by femtosecond XUV free-electron laser pulses at FLASH. Ex-situ analysis of the damaged spots, performed by different types of microscopy, shows that the weakest detected damage is surface roughening. For higher fluences we observe ablation of Ru. Combined simulations using Monte-Carlo code XCASCADE(3D) and the two-temperature model reveal that the damage mechanism is photomechanical spallation, similar to the case of irradiating the target with optical lasers. The analogy with the optical damage studies enables us to explain the observed damage morphologies.
    Permanent Link: http://hdl.handle.net/11104/0292293

     
     
Number of the records: 1  

  This site uses cookies to make them easier to browse. Learn more about how we use cookies.