Number of the records: 1  

Computational analysis of crack-like defects influence on the open cell ceramic foam tensile strength

  1. 1.
    0495409 - ÚFM 2019 RIV CH eng C - Conference Paper (international conference)
    Ševeček, O. - Majer, Z. - Marcián, P. - Bertolla, Luca - Kotoul, M.
    Computational analysis of crack-like defects influence on the open cell ceramic foam tensile strength.
    Advances in Fracture and Damage Mechanics XVII. Zürich: Trans Tech Publications, 2018 - (Aliabadi, F.; Rodriguez-Tembleque, L.; Dominguez, J.), s. 271-276. Key Engineering Materials, 774. ISBN 978-3-0357-1350-3. ISSN 1013-9826.
    [FDM 2018 - International Conference on Fracture and Damage Mechanics /17./. Bangkok (TH), 04.09.2018-06.09.2018]
    Institutional support: RVO:68081723
    Keywords : Ceramic foam * Crack defect * FEM * Fracture * Tensile test
    OECD category: Ceramics

    This work deals with a computational analysis and quantification of the influence of processing (primarily crack-like) defects of various amount on the (tensile) strength of open cell ceramic foam structures. This information is essential e.g. for application of these materials in the mechanically loaded application, where a design with certain reliability to operating conditions is required. The analysed ceramic foam structures are composed of both regular and irregular cells and crack-like defects (pre-cracked struts) are simulated inside them. The foam structure is modelled using a 3D FE beam element based model created by utilization of the Voronoi tessellation technique. The tensile strength upon presence of various amount of pre-cracked struts is analysed based upon an iterative FE simulation on whose base the critical failure force leading to specimen fracture is determined. The performed parametric study relates the tensile strength of the foam structure to the amount of initial defects. With increasing amount of these defects, the foam strength decreases by approximately 30% with every 10% of broken struts. This information can be directly used for a fast estimation of the foam tensile strength if the fraction of broken struts to the intact ones is known (e.g. from a microscopic analysis).
    Permanent Link: http://hdl.handle.net/11104/0288469

     
     
Number of the records: 1  

  This site uses cookies to make them easier to browse. Learn more about how we use cookies.