Number of the records: 1  

Tailored Band Gaps in Sulfur- and Nitrogen-Containing Porous Donor-Acceptor Polymers

  1. 1.
    0479656 - ÚOCHB 2018 RIV DE eng J - Journal Article
    Schwarz, D. - Kochergin, Y. S. - Acharjya, A. - Ichangi, Arun - Opanasenko, Maksym - Čejka, Jiří - Lappan, U. - Arki, P. - He, J. - Schmidt, J. - Nachtigall, P. - Thomas, A. - Tarábek, Ján - Bojdys, Michael J.
    Tailored Band Gaps in Sulfur- and Nitrogen-Containing Porous Donor-Acceptor Polymers.
    Chemistry - A European Journal. Roč. 23, č. 53 (2017), s. 13023-13027. ISSN 0947-6539. E-ISSN 1521-3765
    Institutional support: RVO:61388963 ; RVO:61388955
    Keywords : conjugated microporous polymers * donor-acceptor dyads * photocatalysis * sulfur * triazine
    OECD category: Organic chemistry; Physical chemistry (UFCH-W)
    Impact factor: 5.160, year: 2017

    Donor-acceptor dyads hold the key to tuning of electrochemical properties and enhanced mobility of charge carriers, yet their incorporation into a heterogeneous polymer network proves difficulty owing to the fundamentally different chemistry of the donor and acceptor subunits. A family of sulfur-and nitrogen-containing porous polymers (SNPs) are obtained via Sonogashira-Hagihara cross-coupling and combine electron-withdrawing triazine (C3N3) and electron-donating, sulfur-containing linkers. Choice of building blocks and synthetic conditions determines the optical band gap (from 1.67 to 2.58 eV) and nanoscale ordering of these microporous materials with BET surface areas of up to 545 m(2) g(-1) and CO2 capacities up to 1.56 mmolg(-1). Our results highlight the advantages of the modular design of SNPs, and one of the highest photocatalytic hydrogen evolution rates for a crosslinked polymer without Pt co-catalyst is attained (194 mu mol h(-1) g(-1)).
    Permanent Link: http://hdl.handle.net/11104/0275629

     
     
Number of the records: 1  

  This site uses cookies to make them easier to browse. Learn more about how we use cookies.