Number of the records: 1  

Chains of type-I radio bursts and drifting pulsation structures

  1. 1.
    0479161 - ASÚ 2018 RIV FR eng J - Journal Article
    Karlický, Marian
    Chains of type-I radio bursts and drifting pulsation structures.
    Astronomy & Astrophysics. Roč. 602, June (2017), A122/1-A122/7. ISSN 0004-6361. E-ISSN 1432-0746
    R&D Projects: GA ČR(CZ) GA16-13277S; GA ČR(CZ) GA17-16447S
    Institutional support: RVO:67985815
    Keywords : Sun activity * radio radiation * flares
    OECD category: Astronomy (including astrophysics,space science)
    Impact factor: 5.565, year: 2017

    Owing to similarities of chains of type-I radio bursts and drifting pulsation structures the question arises as to whether both these radio bursts are generated by similar processes. Characteristics and parameters of both these radio bursts are compared. We present examples of both types of bursts and show their similarities and di ff erences. Then, for chains of type-I bursts, a similar model as for drifting pulsation structures (DPSs) is proposed. We show that, similar to the DPS model, the chains of type-I bursts can be generated by the fragmented magnetic reconnection associated with plasmoid interactions. To support this new model of chains of type-I bursts, we present an e ff ect of merging two plasmoids to form one larger plasmoid on the radio spectrum of DPS. This process can also explain the ` wavy' appearance of some chains of type-I bursts. Further, we show that the chains of type-I bursts with the wavy appearance can be used for estimation of the magnetic field strength in their sources. We think that di ff erences of chains of type-I bursts and DPSs are mainly owing to di ff erent regimes of the magnetic field reconnection. While in the case of chains of type-I bursts, the magnetic reconnection and plasmoid interactions are in the quasi-separatrix layer of the active region in more or less quasi-saturated regime, in the case of DPSs, observed in the impulsive phase of eruptive flares, the magnetic reconnection and plasmoid interactions are in the current sheet formed under the flare magnetic rope, which moves upwards and forces this magnetic reconnection.
    Permanent Link: http://hdl.handle.net/11104/0275158

     
     
Number of the records: 1  

  This site uses cookies to make them easier to browse. Learn more about how we use cookies.