Number of the records: 1  

Recent Progress in Molecular Simulation of Aqueous Electrolytes: Force Fields, Chemical Potentials and Solubility.

  1. 1.
    0466027 - ÚCHP 2017 RIV GB eng J - Journal Article
    Nezbeda, Ivo - Moučka, F. - Smith, W.R.
    Recent Progress in Molecular Simulation of Aqueous Electrolytes: Force Fields, Chemical Potentials and Solubility.
    Molecular Physics. Roč. 114, č. 11 (2016), s. 1665-1690. ISSN 0026-8976. E-ISSN 1362-3028
    R&D Projects: GA ČR GA15-19542S
    Grant - others:NSERC(CA) OGP1041
    Institutional support: RVO:67985858
    Keywords : force fields * chemical potentials * aqueous electrolytes
    Subject RIV: CF - Physical ; Theoretical Chemistry
    Impact factor: 1.870, year: 2016

    Although aqueous electrolytes are among the most important solutions, the molecular simulation of their intertwined properties of chemical potentials, solubility and activity coefficients has remained a challenging problem, and has attracted considerable recent interest. In this perspectives review, we focus on the simplest case of aqueous sodium chloride at ambient conditions and discuss the two main factors that have impeded progress. The first is lack of consensus with respect to the appropriate methodology for force field (FF) development. We examine how most commonly used FFs have been developed, and emphasise the importance of distinguishing between 'Training Set Properties' used to fit the FF parameters, and 'Test Set Properties', which are pure predictions of additional properties. The second is disagreement among solubility results obtained, even using identical FFs and thermodynamic conditions. Solubility calculations have been approached using both thermodynamic-based methods and direct molecular dynamics-based methods implementing coexisting solution and solid phases. Although convergence has been very recently achieved among results based on the former approach, there is as yet no general agreement with simulation results based on the latter methodology. We also propose a new method to directly calculate the electrolyte standard chemical potential in the Henry law ideality model. We conclude by making recommendations for calculating solubility, chemical potentials and activity coefficients, and outline a potential path for future progress.
    Permanent Link: http://hdl.handle.net/11104/0264477

     
     
Number of the records: 1  

  This site uses cookies to make them easier to browse. Learn more about how we use cookies.