Number of the records: 1  

Singles correlation energy contributions in solids

  1. 1.
    0446834 - ÚFCH JH 2016 RIV US eng J - Journal Article
    Klimeš, Jiří - Kaltak, M. - Maggio, E. - Kresse, G.
    Singles correlation energy contributions in solids.
    Journal of Chemical Physics. Roč. 143, č. 10 (2015), s. 102816. ISSN 0021-9606. E-ISSN 1089-7690
    Grant - others:GA MŠk(CZ) LM2010005
    Institutional support: RVO:61388955
    Keywords : Density functional theory * Green's function methods * Lattice constants
    Subject RIV: CF - Physical ; Theoretical Chemistry
    Impact factor: 2.894, year: 2015

    The random phase approximation to the correlation energy often yields highly accurate results for condensed matter systems. However, ways how to improve its accuracy are being sought and here we explore the relevance of singles contributions for prototypical solid state systems. We set out with a derivation of the random phase approximation using the adiabatic connection and fluctuation dissipation theorem, but contrary to the most commonly used derivation, the density is allowed to vary along the coupling constant integral. This yields results closely paralleling standard perturbation theory. We re-derive the standard singles of Görling-Levy perturbation theory [A. Görling and M. Levy, Phys. Rev. A 50, 196 (1994)], highlight the analogy of our expression to the renormalized singles introduced by Ren and coworkers [Phys. Rev. Lett. 106, 153003 (2011)], and introduce a new approximation for the singles using the density matrix in the random phase approximation. We discuss the physical relevance and importance of singles alongside illustrative examples of simple weakly bonded systems, including rare gas solids (Ne, Ar, Xe), ice, adsorption of water on NaCl, and solid benzene. The effect of singles on covalently and metallically bonded systems is also discussed.
    Permanent Link: http://hdl.handle.net/11104/0248798

     
    FileDownloadSizeCommentaryVersionAccess
    0446834.pdf1684 KBopen accessPublisher’s postprintopen-access
     
Number of the records: 1  

  This site uses cookies to make them easier to browse. Learn more about how we use cookies.