Number of the records: 1  

Contrasting reproductive strategies of triploid hybrid males in vertebrate mating systems

  1. 1.
    0445168 - ÚŽFG 2016 RIV GB eng J - Journal Article
    Pruvost, N. B. M. - Mikulíček, P. - Choleva, Lukáš - Reyer, H. U.
    Contrasting reproductive strategies of triploid hybrid males in vertebrate mating systems.
    Journal of Evolutionary Biology. Roč. 28, č. 1 (2015), s. 189-204. ISSN 1010-061X. E-ISSN 1420-9101
    Institutional support: RVO:67985904
    Keywords : all-hybrid population * asexual reproduction * gamete production * hemiclone * hybridization
    Subject RIV: EG - Zoology
    Impact factor: 2.747, year: 2015

    The scarcity of parthenogenetic vertebrates is often attributed to their inferior' mode of clonal reproduction, which restricts them to self-reproduce their own genotype lineage and leaves little evolutionary potential with regard to speciation and evolution of sexual reproduction. Here, we show that for some taxa, such uniformity does not hold. Using hybridogenetic water frogs (Pelophylax esculentus) as a model system, we demonstrate that triploid hybrid males from two geographic regions exhibit very different reproductive modes. With an integrative data set combining field studies, crossing experiments, flow cytometry and microsatellite analyses, we found that triploid hybrids from Central Europe are rare, occur in male sex only and form diploid gametes of a single clonal lineage. In contrast, triploid hybrids from north-western Europe are widespread, occur in both sexes and produce recombined haploid gametes. These differences translate into contrasting reproductive roles between regions. In Central Europe, triploid hybrid males sexually parasitize diploid hybrids and just perpetuate their own genotype - which is the usual pattern in parthenogens. In north-western Europe, on the other hand, the triploid males are gamete donors for diploid hybrids, thereby stabilizing the mixed 2n-3n hybrid populations. By demonstrating these contrasting roles in male reproduction, we draw attention to a new significant evolutionary potential for animals with nonsexual reproduction, namely reproductive plasticity.
    Permanent Link: http://hdl.handle.net/11104/0247574

     
     
Number of the records: 1  

  This site uses cookies to make them easier to browse. Learn more about how we use cookies.