Number of the records: 1  

Expansion of Access Tunnels and Active-Site Cavities Influence Activity of Haloalkane Dehalogenases in Organic Cosolvents

  1. 1.
    0392431 - ÚVGZ 2014 RIV DE eng J - Journal Article
    Stěpánková, V. - Khabiri, Morteza - Březovský, J. - Pavelka, A. - Sýkora, Jan - Amaro, Mariana - Minofar, Babak - Prokop, Z. - Hof, Martin - Ettrich, Rüdiger - Chaloupková, R. - Damborský, J.
    Expansion of Access Tunnels and Active-Site Cavities Influence Activity of Haloalkane Dehalogenases in Organic Cosolvents.
    Chembiochem. Roč. 14, č. 7 (2013), s. 890-897. ISSN 1439-4227. E-ISSN 1439-7633
    R&D Projects: GA ČR GA203/08/0114
    Institutional support: RVO:67179843 ; RVO:61388955
    Keywords : enzyme catalysis * enzyme structure * haloalkane dehalogenases * molecular dynamics * organic cosolvents
    Subject RIV: BO - Biophysics; CF - Physical ; Theoretical Chemistry (UFCH-W)
    Impact factor: 3.060, year: 2013

    The use of enzymes for biocatalysis can be significantly enhanced by using organic cosolvents in the reaction mixtures. Selection of the cosolvent type and concentration range for an enzymatic reaction is challenging and requires extensive empirical testing. An understanding of protein–solvent interaction could provide a theoretical framework for rationalising the selection process. Here, the behaviour of three model enzymes (haloalkane dehalogenases) was investigated in the presence of three representative organic cosolvents (acetone, formamide, and isopropanol). Steady-state kinetics assays, molecular dynamics simulations, and time-resolved fluorescence spectroscopy were used to elucidate the molecular mechanisms of enzyme–solvent interactions. Cosolvent molecules entered the enzymes’ access tunnels and active sites, enlarged their volumes with no change in overall protein structure, but surprisingly did not act as competitive inhibitors. At low concentrations, the cosolvents either enhanced catalysis by lowering K0.5 and increasing kcat, or caused enzyme inactivation by promoting substrate inhibition and decreasing kcat. The induced activation and inhibition of the enzymes correlated with expansion of the active-site pockets and their occupancy by cosolvent molecules. The study demonstrates that quantitative analysis of the proportions of the access tunnels and active-sites occupied by organic solvent molecules provides the valuable information for rational selection of appropriate protein–solvent pair and effective cosolvent concentration.
    Permanent Link: http://hdl.handle.net/11104/0221303

     
     
Number of the records: 1  

  This site uses cookies to make them easier to browse. Learn more about how we use cookies.