Number of the records: 1  

3D imaging of radiation damage in silicon sensor and spatial mapping of charge collection efficiency

  1. 1.
    0392289 - ÚJF 2014 RIV GB eng J - Journal Article
    Jakůbek, M. - Jakůbek, J. - Žemlička, J. - Platkevič, M. - Havránek, Vladimír - Semián, Vladimír
    3D imaging of radiation damage in silicon sensor and spatial mapping of charge collection efficiency.
    Journal of Instrumentation. Roč. 8, č. 3 (2013), C03023. ISSN 1748-0221. E-ISSN 1748-0221.
    [14th International Workshop on Radiation Imaging Detectors. Figueira da Foz, Coimbra, 01.07.2012-05.07.2012]
    R&D Projects: GA TA ČR TA01010237; GA ČR(CZ) GA103/09/2101
    Institutional support: RVO:61389005 ; RVO:68378297
    Keywords : solid media * radiation damage * Pixelated detectors
    Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders; JL - Materials Fatigue, Friction Mechanics (UTAM-F)
    Impact factor: 1.526, year: 2013
    http://iopscience.iop.org/1748-0221/8/03/C03023/pdf/1748-0221_8_03_C03023.pdf

    Radiation damage in semiconductor sensors alters the response and degrades the performance of many devices ultimately limiting their stability and lifetime. In semiconductor radiation detectors the homogeneity of charge collection becomes distorted while decreasing the overall detection efficiency. Moreover the damage can significantly increase the detector noise and degrade other electrical properties such as leakage current. In this work we present a novel method for 3D mapping of the semiconductor radiation sensor volume allowing displaying the three dimensional distribution of detector properties such as charge collection efficiency and charge diffusion rate. This technique can visualize the spatially localized changes of local detector performance after radiation damage. Sensors used were 300 mu m and 1000 mu m thick silicon bump-bonded to a Timepix readout chip which serves as an imaging multichannel microprobe (256 x 256 square pixels with pitch of 55 mu m, i.e. all together 65 thousand channels). Per pixel energy sensitivity of the Timepix chip allows to evaluate the local charge collection efficiency and also the charge diffusion rate. In this work we implement an X-ray line scanning technique for systematic evaluation of changes in the performance of a silicon sensor intentionally damaged by energetic protons.
    Permanent Link: http://hdl.handle.net/11104/0221246

     
     
Number of the records: 1  

  This site uses cookies to make them easier to browse. Learn more about how we use cookies.