Number of the records: 1  

Inclusive charged hadron elliptic flow in Au+Au collisions at root s(NN)=7.7-39 GeV

  1. 1.
    0388209 - ÚJF 2013 RIV US eng J - Journal Article
    Adamczyk, L. - Agakishiev, G. - Aggarwal, M. M. - Ahammed, Z. - Alakhverdyants, A. V. - Alekseev, I. - Alford, J. - Anderson, B. D. - Anson, C. - Barnovská, Zuzana - Bielčík, J. - Bielčíková, Jana - Chaloupka, Petr - Chung, Paul - Hajková, O. - Kapitán, Jan - Pachr, M. - Rusňák, Jan - Šumbera, Michal - Tlustý, David … Total 373 authors
    Inclusive charged hadron elliptic flow in Au+Au collisions at root s(NN)=7.7-39 GeV.
    Physical Review. C. Roč. 86, č. 5 (2012), s. 054908. ISSN 0556-2813
    R&D Projects: GA MŠMT LA09013
    Institutional support: RVO:61389005
    Keywords : heavy ion collision * hadron production * STAR
    Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders
    Impact factor: 3.715, year: 2012

    A systematic study is presented for centrality, transverse momentum (p(T)), and pseudorapidity (eta) dependence of the inclusive charged hadron elliptic flow (v(2)) at midrapidity (vertical bar eta vertical bar < 1.0) in Au + Au collisions at root s(NN) = 7.7, 11.5, 19.6, 27, and 39 GeV. The results obtained with different methods, including correlations with the event plane reconstructed in a region separated by a large pseudorapidity gap and four-particle cumulants (v(2){4}), are presented to investigate nonflow correlations and v(2) fluctuations. We observe that the difference between v(2){2} and v(2){4} is smaller at the lower collision energies. Values of v(2), scaled by the initial coordinate space eccentricity, v(2)/epsilon, as a function of p(T) are larger in more central collisions, suggesting stronger collective flow develops in more central collisions, similar to the results at higher collision energies. These results are compared to measurements at higher energies at the Relativistic Heavy Ion Collider (root s(NN) = 62.4 and 200 GeV) and at the Large Hadron Collider (Pb + Pb collisions at root s(NN) = 2.76 TeV). The v(2)(pT) values for fixed pT rise with increasing collision energy within the pT range studied (<2 GeV/c). A comparison to viscous hydrodynamic simulations is made to potentially help understand the energy dependence of v(2)(pT). We also compare the v(2) results to UrQMD and AMPT transport model calculations, and physics implications on the dominance of partonic versus hadronic phases in the system created at beam energy scan energies are discussed.
    Permanent Link: http://hdl.handle.net/11104/0217038

     
     
Number of the records: 1  

  This site uses cookies to make them easier to browse. Learn more about how we use cookies.