Number of the records: 1  

Assessment of the Performance of MP2 and MP2 Variants for the Treatment of Noncovalent Interactions

  1. 1.
    0377107 - ÚOCHB 2013 RIV US eng J - Journal Article
    Riley, Kevin Eugene - Platts, J. A. - Řezáč, Jan - Hobza, Pavel - Hill, J. G.
    Assessment of the Performance of MP2 and MP2 Variants for the Treatment of Noncovalent Interactions.
    Journal of Physical Chemistry A. Roč. 116, č. 16 (2012), s. 4159-4169. ISSN 1089-5639. E-ISSN 1520-5215
    R&D Projects: GA ČR GBP208/12/G016
    Grant - others:European Social Fund(XE) CZ1.05/2.1.00/03/0058
    Institutional research plan: CEZ:AV0Z40550506
    Keywords : plesset perturbation-theory * density-functional-theory * intermolecular interaction energies * molecular-orbital methods * auxiliary basis-sets * ab-initio
    Subject RIV: CF - Physical ; Theoretical Chemistry
    Impact factor: 2.771, year: 2012

    For many years, MP2 served as the principal method for the treatment of noncovalent interactions. Until recently, this was the only technique that could be used to produce reasonably accurate binding energies, with binding energy errors generally below similar to 35%, at a reasonable computational cost. The past decade has seen the development of many new methods with improved performance for noncovalent interactions, several of which are based on MP2. Here, we assess the performance of MP2, LMP2, MP2-F12, and LMP2-F12, as well as spin component scaled variants (SCS) of these methods, in terms of their abilities to produce accurate interaction energies for binding motifs commonly found in organic and biomolecular systems. Reference data from the newly developed S66 database of interaction energies are used for this assessment, and a further set of 38 complexes is used as a test set for SCS methods developed herein. The strongly basis set-dependent nature of MP2 is confirmed in this study, with the SCS technique greatly reducing this behavior. It is found in this work that the spin component scaling technique can effectively be used to dramatically improve the performance of MP2 and MP2 variants, with overall errors being reduced by factors of about 1.5-2. SCS versions of all MP2 variants tested here are shown to give similarly accurate overall results.
    Permanent Link: http://hdl.handle.net/11104/0006979

     
     
Number of the records: 1  

  This site uses cookies to make them easier to browse. Learn more about how we use cookies.