Number of the records: 1  

Linear representation of energy-dependent Hamiltonians

  1. 1.
    0101868 - UJF-V 20043051 RIV NL eng J - Journal Article
    Znojil, Miloslav
    Linear representation of energy-dependent Hamiltonians.
    [Lineární reprezentace Hamiltoniánů závislých na energii.]
    Physics Letters. A. Roč. 326, 1/2 (2004), s. 70-76. ISSN 0375-9601. E-ISSN 1873-2429
    R&D Projects: GA AV ČR IAA1048302
    Institutional research plan: CEZ:AV0Z1048901
    Keywords : energy-dependent Hamiltonians * Quasi-Hermitian linear representation
    Subject RIV: BE - Theoretical Physics
    Impact factor: 1.454, year: 2004

    Quantum mechanics abounds in models with Hamiltonian operators which are energy-dependent. A linearization of the underlying Schrodinger equation with H = H(E) is proposed here via an introduction of a doublet of separate energy-independent representatives K and L of the respective right and left action of H(E). Both these new operators are non-Hermitian so that our formalism admits a natural extension to non-Hermitian initial H(E)s. Its applicability may range from pragmatic phenomenology and variational calculations (where all the subspace-projected effective operators depend on energy by construction) up to perturbation theory and quasi-exact constructions

    Hamiltoniánům H(E) závislým na energii E je přiřazena dvojice K a L (= pravý a levý) nehermitovských reprezentantů nezávislých na energii. Formalismus snadno připouští i nehermitovost výchozího Hamiltoniánu. Zdůrazněna široká aplikovatelnost.
    Permanent Link:

Number of the records: 1  

  This site uses cookies to make them easier to browse. Learn more about how we use cookies.