Number of the records: 1  

Different types of continuity of triangular norms revisited

  1. 1.
    0025906 - ÚTIA 2006 RIV US eng J - Journal Article
    Klement, E.P. - Mesiar, Radko - Pap, E.
    Different types of continuity of triangular norms revisited.
    [O rôznych typoch spojitosti triangulárnych noriem.]
    New Matematics and Natural Computation. Roč. 1, č. 2 (2005), s. 195-211. ISSN 1793-0057. E-ISSN 1793-7027
    R&D Projects: GA ČR(CZ) GA402/04/1026
    Institutional research plan: CEZ:AV0Z10750506
    Keywords : triangular norm * Lipschitz property * Schur concavity * stability
    Subject RIV: BA - General Mathematics

    Different types of continuity of triangular norms are investigated. The types wich are stronger than the usual continuity are analytical properties and, therefore, there are representations of the corresponding triangular norms. This is not the case for the weaker types of continuity (which are topological properties). In these cases, some related analytical properties are discussed, in particular, the Schur concavity.

    Skúmame rôzne typy spojitosti triangulárnych noriem. Typy silnejsie nez klasická spojitosť sú analytickými vlastnosťami, čo umožňuje reprezentovať zodpovedajúce triangulárne normy. Toto sa nedá v prípade slabších typov spojitosti, ktoré sú topologickými vlastnosťami. V takom prípade rozoberáme niektoré analytické vlastnosti, najmä Schurovu konkávnosť.
    Permanent Link: http://hdl.handle.net/11104/0116231


     
     
Number of the records: 1  

  This site uses cookies to make them easier to browse. Learn more about how we use cookies.