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ABSTRACT 

This work is focused on barley proteomic studies in relation to the beer production. Barley 

belongs between the most important crops in the world and its greatest use is for malting 

purposes, most commonly for the brewing industry. Studies of barley proteins during malting 

and brewing provide information about changes in protein composition or their 

post-translational modifications. Since the protein composition and their modifications are 

essential for the quality of malt and beer, barley proteomic studies have a potential to improve 

the malting and brewing process. 

The main goal of this thesis is to investigate barley water-soluble proteins and their changes 

that occur during the malting and brewing process. The differences in protein composition 

were investigated using gel electrophoresis, reversed phase and size exclusion liquid 

chromatography, and MALDI-TOF mass spectrometry. The amount of some proteins 

is increasing and some new proteins are created in the germinated grain during the malting 

process. Contrary, many proteins are decomposed during the brewing process due to the high 

temperature and enzymatic activity of some proteases. Only some proteins belonging to the 

family of pathogenesis related proteins resist these harsh conditions and pass into the beer 

where they can influence several important quality properties. 

Furthermore, various barley varieties and their differences were investigated. Varieties 

allowed for the production of certified Czech beer were compared to one variety with 

well-proven malting properties and one non-malting barley variety. In addition, 

alcohol-soluble barley proteins and their changes during the malting process were investigated 

as well. 

A special attention was paid to selected post-translational modifications of proteins, namely 

glycosylations. Non-enzymatically glycosylated barley proteins (or glycated proteins) are 

formed during the malting process considering the large amount of glucose released from the 

starch degradation, and influence the protein stability as well as the beer quality, especially 

foaming properties. Enzymatic N-glycosylation represents the most frequently studied 

post-translational modification in plants because glycoproteins play a key role in various 

biological functions. Since glycoproteins are often present in a small amount, their enrichment 

from a complex mixture is required for their analysis. Lectin concanavalin A affinity 

chromatography was used for barley glycoproteins investigation. Moreover, the analysis 

of the carbohydrate part of glycoproteins was optimized. 

This doctoral thesis brings important information about barley proteins, their modifications 

and analysis that are useful for further studies. 
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ABSTRAKT 

Tato práce se zabývá proteomickými studiemi ječmene v souvislosti s výrobou piva. 

Ječmen patří mezi nejvýznamnější plodiny na světě a je vyuţíván hlavně pro sladovnické 

účely, nejčastěji pro pivovarnictví. Studium proteinů ječmene během sladování a výroby piva 

poskytuje informace o změnách v proteinovém sloţení nebo jejich posttranslačních 

modifikacích. Jelikoţ jsou proteiny v ječmeni a jejich změny zásadní pro kvalitu sladu a piva, 

proteomické studie ječmene mají potenciál pro zlepšení procesu sladování a pivovarnictví. 

Hlavním cílem této práce je studium ve vodě rozpustných proteinů ječmene a jejich změn, 

ke kterým dochází během sladování a výroby piva. Rozdíly v proteinovém sloţení byly 

sledovány pomocí gelové elektroforézy, kapalinové chromatografie na reverzní fázi, gelové 

chromatografie a MALDI-TOF hmotnostní spektrometrie. Během sladování se vlivem klíčení 

zrna zvyšuje mnoţství některých proteinů a také jsou tvořeny nové proteiny. V průběhu 

vaření piva se naopak v důsledku vysoké teploty a enzymatické aktivity proteáz mnoho 

proteinů rozkládá. Těmto drsným podmínkám odolají jen některé proteiny, které přechází 

aţ do piva a mohou ovlivnit jeho kvalitu. 

Dále byly zkoumány různé odrůdy ječmene a jejich rozdíly. Byly porovnány odrůdy 

povolené pro výrobu certifikovaného Českého piva s jednou osvědčenou sladovnickou 

odrůdou a jednou nesladovnickou odrůdou ječmene. Kromě toho byly studovány v alkoholu 

rozpustné proteiny ječmene a jejich změny v průběhu sladování. 

Zvláštní pozornost byla věnována vybrané skupině posttranslačních modifikací proteinů: 

glykosylacím. Neenzymaticky glykosylované proteiny ječmene (neboli glykované proteiny) 

jsou tvořeny v průběhu sladování kvůli přítomnosti velkého mnoţství glukózy uvolněné 

z rozkladu škrobu. Glykované proteiny ovlivňují stabilitu proteinů a kvalitu piva, obzvlášť 

pěnotvorný účinek. Enzymatické N-glykosylace představují nejčastěji studované 

posttranslační modifikace u rostlin, protoţe glykoproteiny hrají klíčovou roli v různých 

biologických funkcích. Glykoproteiny jsou často přítomny v malém mnoţství, a proto je pro 

jejich analýzu potřebné obohacení glykoproteinů z komplexní směsi. Pro studium 

glykoproteinů byla vyuţita afinitní chromatografie s lektinem concanavalin A. Kromě toho 

byla také optimalizována analýza sacharidové části glykoproteinů. 

Tato disertační práce přináší důleţité informace o proteinech ječmene, jejich změnách 

a analýze, které budou uţitečné pro další studium. 
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1. INTRODUCTION 

Proteins are abundant component in all cells and are important for various biological 

functions.
1
 In the structural point of view, proteins are macromolecules consisting of one 

or more polypeptides, whereas each polypeptide consists of a chain of amino acids linked 

together by peptide bonds. The exact amino acid sequence is determined by the gene coding.
2
 

Proteins vary in molecular mass, ranging approximately from 5000 to more than a million 

Daltons (Da).
1
 A scientific discipline dealing with the global analysis of proteins is called 

proteomics.
3
 This term was established by Marc Wilkins and his colleagues in the early 

nineties.
4
 Proteomics has grown rapidly in a short time and nowadays provides much 

information about living systems.
3
  

Barley (Hordeum vulgare L.) is one of the most important cereal crops in the world.  This 

highly adaptable cereal grain is produced from sub-arctic to subtropical climates. Historically, 

barley has been an important food source in many parts of the world. However, only 2 % 

of barley is used for human food at present, mainly in the developing world. It is used as an 

animal feed more likely, and the worldwide greatest use of barley is for malting purposes, 

most specifically for the brewing industry.
5,6

  Malting is controlled germination of cereals 

evoking physical and biochemical changes within the grain, consequently stabilized by grain 

drying. Two types of barley are frequently used for malting: 6-row and 2-row. Two-row 

barley produces malt with a large extract, lighter colour, and less enzyme content than the 

6-row type. Furthermore, hulled barley is preferred to hull-less barley for malting and brewing 

because the hull contributes to beer flavour and aids filtering during brewing.
6
 

Whole barley grain contains about 10 – 17 % of protein. Protein is therefore a minor 

component in comparison to starch, which accounts for about 65 – 68 % of the grain mass.
6,7

 

Nevertheless, it is a major determinant of the quality of the grain for malting, brewing, and 

distilling. From a function point of view, barley proteins can be broadly classified into three 

groups: enzymes and enzyme inhibitors, storage proteins, and protective proteins.
7
 

Although barley seed proteins have been investigated for a long time, the application 

of proteomic methods developed within the last two decades extremely enhanced the 

possibility to identify proteins of interest, to follow changes in protein composition during 

malting and brewing and also understanding the effect of protein modification on the quality 

of beer. Applications of proteomics in food science have therefore a great potential to improve 

significantly the malting and brewing process.
8
 

Malting of barley has been carried out for centuries without knowledge of the molecular 

processes taking place in the seed during germination. Since the time maltsters have detailed 

insight into processes that occur during germination, malting is optimized for speed 

of germination and breeders are involved in the development of high-quality value barley 

varieties. The malt quality is predominantly determined by barley variety, namely its genetic 

background, and the physical conditions during growth in the field, harvest and storage of the 

grains. Thus, barley variety selected for use in the brewing industry must meet special quality 

requirements.
9,10

 

In the Czech brewing, the traditional production of pale lager has been preserved due to 

historical reasons. The malting spring barley varieties suitable for the production of this 

Czech-type beer have a high level of residual extract, strong and full palate, excellent foaming 

power, and relatively low alcohol content.
11

 The production of Czech-type beer with authentic 

mark ―České pivo‖ (Czech beer) as a ―Protected Geographical Indication‖ is allowed in the 
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Czech Republic by the European Union by Council Regulation EC No. 510/2006 of 20 March 

2006
12

. The characteristic nature of the Czech beer is provided by a number of factors, 

including the raw materials used or the special brewing process. It is dominated by malt and 

hops, higher concentration of polyphenols and a higher pH value and no foreign tastes 

or odours are permissible. One very important characteristic of Czech beer is its bitterness that 

lingers in the mouth for a long time and also aids the digestive process.
12

 For the Czech beer 

production, only few barley varieties are allowed (Tolar, Malz, Bojos, Blaník, Advent, 

Aksamit, Calgary and Radegast), according to recommendation of the Czech Research 

Institute of Brewing and Malting, PLC (RIBM).
13

  

In this doctoral thesis, barley proteins were investigated using various proteomic 

techniques. The theoretical part contains general information about proteomics, 

post-translational modifications of proteins, beer production, important beer proteins, as well 

as the description of the analytical methods used for protein investigation. In the following 

chapters, the experimental and results of performed analyses are described and discussed. 

Protein composition was studied in barley grain, malt, beer and intermediate products of the 

beer production. Different barley varieties were also studied and compared, including those 

allowed for the Czech beer production, variety with well-proven malting properties, as well as 

one non-malting barley variety. A special attention was paid on post-translational 

modifications of barley proteins, specifically enzymatic glycosylations, and non-enzymatic 

glycations created during the malting and brewing process.    
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2. THEORETICAL PART 

2.1. Proteomics 

Proteomics is a rapidly growing area of molecular biology that is concerned with the 

systematic and large-scale analysis of proteins from cells, tissues or whole organisms. It is 

based on the concept of the proteome as a complete set of proteins produced by a given cell or 

organism under a defined conditions. Proteins present the major constituent of living cells and 

participate in almost every biological process in all organisms. Therefore, a comprehensive 

protein analysis provides a unique global perspective on how these molecules interact and 

cooperate to create and maintain a working biological system. Proteins are explored for use 

in many fields, including biotechnology, pharmacology, and biomedical applications.
3,14

 

Table 1: Name, abbreviations, residue mass and side-chain composition of the twenty 

common amino acids
14,15

 

amino acid 
abbreviations 

residue mass side chain 3 letters single letter 

alanine Ala A 71.08 ― CH3 

asparagine Asn N 114.10 ― CH2CONH2 

aspartic acid Asp D 115.09 ― CH2COOH 

arginine Arg R 156.19 ― (CH2)3NH—C(NH)NH2 

cysteine Cys C 103.15 ― CH2SH 

glutamine Gln Q 128.13 ― CH2CH2CONH2 

glutamic acid Glu E 129.16 ― CH2CH2COOH 

glycine Gly G 57.05 ― H 

histidine His H 137.14 ― CH2—C3H3N2 

isoleucine Ile I 113.16 ― CH(CH3)CH2CH3 

leucine Leu L 113.16 ― CH2CH(CH3)2 

lysine Lys K 128.17 ― (CH2)4NH2 

methionine Met M 131.20 ― CH2CH2SCH3 

phenylalanine Phe F 147.18 ― CH2C6H5 

proline Pro P 97.12 ― CH2CH2CH2— 

serine Ser S 87.08 ― CH2OH 

threonine Thr T 101.11 ― CH(OH)CH3 

tryptophan Trp W 186.21 ― CH2C8H6N 

tyrosine Tyr Y 163.18 ― CH2—C6H4OH 

valine Val V 99.13 ― CH(CH3)2 

 

Proteins are comprised of linear polymer chains of amino acids bonded together by peptide 

bonds. The sequence of amino acids is defined by the sequence of a gene. In general, 

the genetic code specifies 20 standard amino acids that are shown in the Table 1. Proteins are 

synthesized within the cell in a multi-step process which includes the transcription of DNA 

into RNA, the processing of RNA into mature mRNA, and finally translation of the mRNA 

into protein. The cell responds to internal and external changes by regulating the level and 

activity of its proteins. Moreover, many proteins are substrates for dynamic modifications that 

regulate their biological activity and interactions. Thus, the qualitative or quantitative changes 
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in the proteome and explanation of protein primary structure and post-translational 

modifications are crucial to studies of biological processes. 

The proteome is a complex and dynamic entity. Therefore, proteomic studies calls for 

highly efficient and sensitive analytical methods for the identification, characterization, and 

quantification of proteins. Today, mass spectrometry (MS) is the most useful analytical 

technique for protein and proteome analysis because it provides a relatively simple platform 

for determination of the molecular mass as one of the fundamental properties of biological 

molecules. In this respect, several strategies can be taken depending on the complexity of the 

sample and the information required.
3,14

  

2.2. Protein post-translational modifications (PTMs) 

The central dogma of molecular biology affirms that a gene is transcribed into RNA and 

then translated into protein. It can be rephrased as the genome (all the genes in the organism) 

gives rise to the transcriptome (the complete set of mRNA in any given cell) which is then 

translated to produce the proteome (the complete collection of proteins in any given cell). 

The transcriptome and proteome are much more complex than the genome because a single 

gene can produce many different mRNAs (e.g. by alternative splicing) and proteins. Different 

proteins can be generated by alternative use of start and stop codons and also, proteins 

synthesized from these mRNAs can be modified in various ways during or after translation. 

The same protein can be modified in many different ways giving rise to innumerable 

variants.
3
 

Cell is not a static entity and it continuously responds to stimuli from its external and 

internal environments.
16

 Therefore, almost all proteins are modified in some way during or 

after synthesis, either by cleavage of the polypeptide backbone or by chemical modification 

of specific amino acid side chains in the process known as post-translational modification 

(PTM).
3
 PTM represents an important mechanism for diversifying and regulating the cellular 

proteome by providing more chemical properties than is possible using the 20 amino acids 

specified by the genetic code.
3,17

 

Protein post-translational modifications play an important role in organism.
18

 It greatly 

enhances functionality of proteins and regulates their activities, thereby largely increases 

protein complexity and dynamics. PTMs serve many different purposes in various cellular 

processes such as enzyme regulation, signal transduction, mediation of protein sub-cellular 

localization and stability, and interactions with proteins and other molecules.
3,19,20

 

Post-translational modifications are therefore essential for a cell‘s survival.
16

 Importantly, 

inappropriate PTM is often associated with disease, and specific post-translational variants 

can be used as disease biomarkers.
3
 Therefore, the analysis of PTMs, modificomics, 

is probably the most frequently studied area of interest in proteomic research.
18,20

 

2.2.1. Types of protein PTMs 

Post-translational modifications can be divided into two broad categories: first, covalent 

addition of one or more groups and second, hydrolytic cleavage of one or more peptide bonds 

in a protein by enzymes termed proteases (protein hydrolases).
21

 More than 400 different 

types of PTMs have been documented.
3
 Nevertheless, only a few of them have been 

extensively investigated at the proteome level.
17

 The most commonly studied protein 
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post-translational modifications include glycosylation, phosphorylation, ubiquitylation, 

acylation, methylation, nitration, or acetylation.
18

 

Some types of modification, such as glycosylation, are generally permanent. The most 

pervasive irreversible PTM is the proteolytic cleavage undergone by all proteins during their 

life cycles. Other PTMs, e.g. phosphorylation, are reversible and can be used to regulate 

protein activity in response to intracellular and extracellular signals and are thus often 

involved in signalling cascades. Post-translational modifications are therefore dynamic 

processes with a role in many biological processes.
3,21

 

2.3. Glycosylation of proteins 

Glycosylation is the covalent linkage of an oligosaccharide side chain to a protein.
22

 In 

plants as in all eukaryotic cells, glycosylation represents the most frequently studied PTM.
23

 

The attachment of carbohydrates to a polypeptide backbone can strongly affect the 

physico-chemical properties of the protein, such as solubility, thermostability or protection 

from proteolysis. Glycoproteins play a key role in various biological functions and are 

important in many cell processes, including immuno-protection, virus replication, 

ligand-receptor interaction, cell growth, intracellular adhesion, occurrence of inflammation 

and so on. Aberrant glycosylation always results in the occurrence of diseases.
18,24

 

A sugar moiety can be attached to a protein either during an enzymatic reaction, 

or a chemical reaction with no enzyme contribution.
24

 

 

Figure 1: Scheme of non-enzymatic glycation
27

 

Non-enzymatic glycosylation (glycation) 

Glycation of proteins take place in the process known as Maillard reaction and leads to the 

formation of a heterogeneous group of compounds called advanced glycosylation end 

products (AGEs). This modification is involved in several age-related diseases in humans and 

in plants. AGEs are created by the reaction of reducing carbohydrates or their derivatives with 

free amine groups in peptides and proteins, such as amino groups in lysine, arginine 

or N-terminal amino acid residue.
22,25,26,27
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The proteins in barley malt are known to be glycated by D-glucose, which is a product of 

starch degradation during malting. The scheme of non-enzymatic glycation is shown in 

Figure 1. D-Glucose reacts with a free amine group yielding a Schiff base, which undergoes 

a rapid rearrangement forming more stable Amadori compounds.
27

 

Enzymatic glycosylation 

Various forms of enzymatic glycosylation are known depending on the linkage between the 

protein backbone and the oligosaccharide moiety: 

 N-glycosylation – will be described in detail in the next chapter (2.3.1) 

 O-glycosylation – O-linked oligosaccharide chain (glycan) is attached through 

an α-O-glycosidic linkage to the hydroxy-group of Ser or Thr nearing Pro. O-glycans 

often have lower mass than N-glycans structures, but can be more heterogeneous. 

O-linked glycosylation may happen at two cellular locations in the cell: in the Golgi, 

or in the nucleus and cytoplasm of cells. The nature of the O-linked glycans differs 

according to the location of the proteins. However, O-glycosylation of secreted 

proteins in plants is not as well understood as N-glycosylation.
18,23,28,29

 

 C-mannosylation – C-mannosylation is the attachment of an α-mannopyranosyl 

residue to Trp via a C-C link and occurs on the first Trp in the motif W-X-X-W (or in 

some cases, W-X-X-C and W-X-X-F).
18

 

 glycosylphosphatidylinositol (GPI) anchor attachments – GPI-anchored proteins are 

membrane bound proteins attached at their C-terminus to a trimannosyl glucosamine 

core structure. The reducing end of the latter moiety is bound to the hydrophobic 

region of the membrane via a phosphatidylinositol group.
29

 

2.3.1. N-glycosylation 

In case of plants, N-glycosylation is the most studied protein modification.
23

 N-linked 

glycoproteins are expressed by all eukaryotic cells.
29

 Oligosaccharides are attached through 

α-N-glycosidic bond to nitrogen of the amide group of Asn residues that are constituent of the 

potential N-glycosylation specific sequence N-X-S/T (where X is any amino acid except Pro). 

Although rare, the sequence motif A-X-C has also been shown to act as an acceptor site.
18,28

 

N-glycans contain a common trimannosyl-chitobiose core Man3GlcNAc2 (mannose-

N-acetyl-D-glucosamine, Figure 2a) with one or more antennae attached to each of the two 

outer mannose residues.
14

 

There are three general types of N-glycans (Figure 2b-d): 

 High-mannose N-glycans (or oligomannose) – contain only mannose (Man) residues 

(between five and nine) appended to the oligosaccharide core. 

 Complex N-glycans – contain the additional monosaccharides, a variable number of 

lactosamine units and are often branched, resulting in a high-level of complexity. 

These first two are the most common group of the N-linked glycans.  

 Hybrid N-glycans – possess structural features of both high-mannose and complex 

glycans.
14,29,29
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Figure 2: a) basic N-linked structure - pentasaccharide Man3GlcNac2; b) example of 

high-mannose N-glycan structure, c) example of complex (tetraantennary) N-glycan structure, 

d) example of hybrid N-glycan structure
29

 

2.3.1.1. Formation of N-glycoproteins 

N-glycosylated proteins are formed in endoplasmic reticulum (ER) as soon as the newly 

synthesized protein enters the ER lumen. First, an oligosaccharide precursor 

Glc3Man9GlcNAc2 (glucose-mannose-N-acetyl-D-glucosamine) is added onto Asn residue.  

Then, the glycoprotein moves from the ER through the Golgi apparatus to its final 

destination.
23

 Within this pathway, the N-glycan undergoes several maturation steps involving 

the final removal and addition of sugar moieties by various glycosidases and 

glycosyltransferases.
22

 More than 30 different types of sugar molecule can be added, and the 

structure and architecture of chains can vary significantly.
3
 

The potential sequence N-X-S/T may occur many times along the polypeptide chain, but all 

the potential N-glycosylation sites does not need to be occupied. The glycosylation possibility 

depends on many factors, involving the tertiary structure of protein or occupancy of other 

glycosylation site. The same glycoprotein may be differently glycosylated under different 

conditions and the regulation of glycosylation pattern is not well understood.
28

 

2.4. Beer production 

Beer belongs to the most popular alcoholic beverages. For its production, four main raw 

materials are required: malt (mainly from barley grain), hop, water and yeast. Barley malt is 

a rich source of enzymes, like those responsible for the production of yeast substrates 

(amylases), flavour (lipoxygenases), or those involved in the formation of foam (will be 

further described in the chapter 2.4.2). Protein content is changing during the beer production 

and only about a third of the malt proteins pass into the final beer.
8,30
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2.4.1. Malting and brewing process 

Malting is the first and essential phase of the beer production defined as the controlled 

germination of grain. Grain is thereby converted into the enzyme rich malt and the main aim 

of the malting process is the production and activation of enzymes.  

Malt production process includes three steps: steeping, germination and malt kilning. Water 

content is increasing in grain during the steeping step (from 12 % to at least 40 % 

of moisture), what initiates enzymatic reactions and grain germinating. Germination is the 

main stage of malting, when embryo is growing and new enzymes are activated and formed. 

Amylolytic enzymes (α-amylase and β-amylase) are the most important enzymes formed 

during malting because they are involved in hydrolysis of starch, glycogen and other 

polysaccharides containing α1-4 glycosidic bonds. While the presence of α-amylase in barley 

grain has not been proven and this enzyme is formed during malting, β-amylase is already 

present in the barley grain and its content increases during malting. These starch degrading 

enzymes play a crucial role mainly during the mashing because they are responsible for the 

increasing amount of fermentable sugars in sweet wort. Other enzymes also contribute to the 

hydrolysis of β-glucans and hordeins (alcohol-soluble proteins), which would otherwise 

restrict access of enzymes to the starch granules. Germination typically takes about 5 days 

to obtain green malt. During the final kilning phase, germination is stopped by hot air, thus 

converted into the more stable and keepable form. This process is followed by the germ 

removing, malt refining and milling. The results of the malting process include an increase in 

enzyme activity and soluble protein, along with breakdown of starch into simple sugars and 

development of the typical colour and flavour. Moreover, some proteins are digested by active 

proteolytic enzymes during the malting and mainly mashing.
6,9,31

 

The next step of the brewing technology is mashing. During the mashing process, 

polysaccharides present in the malt are enzymatically degraded and all desirable compounds 

of malt extract are converted into solution due to the increasing temperature.
6,31

 The mashing 

program is running in several steps and is set up to hold the temperatures according to the 

optimal conditions of individual enzymes.
32

 The obtained sweet wort extract is then separated 

from insoluble residues of malt. In the next step, sweet wort is boiled with hop, what results in 

dissolution of hop bitter and flavour substances and in product stabilization. During the hop 

boiling, the pH value is decreasing, which influence importantly the protein coagulation.
31

 

Furthermore, all of the microorganisms that might be found in wort are killed during 

boiling.
33

 

Acquired wort is then cooled down and separated from sediment, thus prepared for the 

fermentation process. Wort fermentation is promoted by brewer‘s yeast Saccharomyces 

cerevisiae that cause the controlled conversion of saccharides into alcohol and CO2 as well as 

production of required organoleptic properties of beer.
31

 Fermentation also tends to produce 

flavours that are considered undesirable in finish beer. For this reason, beer must undergo 

some form of maturation, also referred as conditioning, lagering or aging. Immature beer is 

often referred to as ―green beer‖ because it sometimes has the aroma of green apple, the result 

of elevated levels of acetaldehyde. During maturation, all of these undesirable compounds are 

reduces by the continuing action of the yeast. Furthermore, beer becomes carbonated because 

the yeast continues to give off CO2.
34

 In the end of the brewing process, beer is separated 

from yeast by sedimentation and filtered for removing of haze-forming particles and 

remaining yeast cells. Thereby, the product is stabilized and can be bottled and stored.
31
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2.4.2. Quality of beer 

In brewing technology, the formation, stability, and texture of foam on the surface of beer 

are important aspects of beer quality and are critical for the consumer‘s visual estimation 

of beer.
8,35

 The foam averts the volatilization of flavour and inhibits oxidation by prevention 

of the direct contact between air and beer. Beer foam quality is defined by its stability, 

creaminess, whiteness, intensity and lacing.
36

 Moreover, excellent foaming power is also an 

important characteristic of Czech-type beer.
11

 

Various components determine beer foam quality, such as proteins, lipids, polysaccharides, 

melanoidins, iso-R-acids, metal ions, alcohol as well as gas composition. The foam formation 

and stability favourably influencing components include proteins from malting barley and 

bitter substances from hops, while lipids and yeast proteins (e.g. thioredoxin
37

, proteinase A
36

) 

are foam destabilizing components. Between important proteins with regard to beer foaming 

belong mainly protein Z, non-specific lipid transfer proteins (ns-LTPs) and 

protease/α-amylase inhibitors.
8,27,35

 

Further characteristics influencing the quality of beer include beer colloidal haze and 

gushing. Colloidal haze can considerably reduce beer quality and also negatively influence the 

consumer‘s visual opinion on a beer because it is considered to be a sign of aging 

or contamination.
8
 A variety of causes of haze formation are known, but the most frequent is 

protein-polyphenol interaction.
38

 Gushing, defined as the over-foaming of beer upon the 

opening of the bottle, is a very serious quality defect. Gushing can be related to the quality 

of malt or probably to surface-active molecules.
8
 The primary beer gushing is associated with 

the infestation of grain with microscopic fibrous fungi.
39

 

2.5. Important barley proteins 

Proteins and peptides contained in beer originate mainly from barley seeds; however, minor 

proteins from Saccharomyces species are also present.
40

 The protein content in barley grains 

represents approximately 10 – 17 % of its total mass and about a third of the barley proteins 

pass into the final beer.
6,8

 Proteins are essential for the quality of malt and beer.
9
 

As mentioned before, high-protein content decomposes available carbohydrates into 

fermentable sugars, proteolysis is necessary for yeast metabolism, and finally, proteins are 

important in beer foam retention and stability.
6
 

2.5.1. Pathogenesis-related proteins (PRs) 

The mature barley seed proteome is rich in pathogenesis related proteins (PRs). This large 

group of seed proteins is assumed to be involved in plant defence.
8
 PRs are classified into 

17 families, based on primary sequence, immunological relationship and biological activity, 

and numbered in the order in which they were described (Table 2). PRs are present in many 

plant species and can be found in all plant organs.
5
 While most of barley seed proteins are 

precipitated upon unfolding or degraded by proteases during the mashing and wort boiling 

process, certain PRs resist these harsh conditions due to resistance towards proteolysis and 

thermal stability. Therefore, the majority of the beer proteins have been identified as PRs.
8
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Table 2: Families of pathogenesis-related proteins (PRs)
5
 

Family Properties 

PR-1 antifungal 

PR-2 beta-1,3-glucanase 

PR-3 chitinase I - II, IV - VII 

PR-4 chitinase type I, II 

PR-5 thaumatin-like protein (TLP) 

PR-6 protease inhibitor 

PR-7 endoproteinase 

PR-8 chitinase type III 

PR-9 peroxidase 

PR-10 ‗ribonuclease-like‘ 

PR-11 chitinase, type V 

PR-12 defensin 

PR-13 thionin 

PR-14 lipid-transfer protein (ns-LTP) 

PR-15 oxalate oxidase 

PR-16 ‗oxalate oxidase-like‘ 

PR-17 unknown 

 

Plants do not contain adaptive immune systems against pathogenic microorganisms and 

pests, but they have a lot of innate defence mechanisms for protecting dormant and 

germinating seeds, including  the action of PRs. Barley natural resistance mechanisms 

involving PRs are important for barley producers as well as for the malting and brewing 

industry because infection of barley is extremely undesirable due to the adverse effect on the 

beer quality and the usage of pesticides and insecticides is inadvisable.
5
 

PRs influence a beer consumer‘s health and beer quality in various ways: 

 play a major role in the formation, stabilization and retention of foam 

 may influence brewer‘s yeast fermentation 

 have an impact on beer colloidal haze 

 may influence the degradation proteins and carbohydrates during malting and 

mashing 

 increase the beer nutritional value as a rich source of essential amino acids 

 may have antioxidant activity 

 may improve lipid metabolism 

 may cause allergic reaction
8
 

2.5.1.1. Protease/α-amylase inhibitors 

Protease inhibitors (PIs) or PR-6 constitute the largest group of proteins identified in barley, 

malt and beer.
5,8

 These proteins probably play a role in controlling the activity of barley 

proteinases during germination and they possibly protect the seed and young plant from 

microbes or pests by enzymes inhibition.
41

 Various important proteins belong between barley 

seed PIs: bifunctional α-amylase/subtilisin inhibitor (BASI), chymotrypsin/subtilisin 

inhibitors (CI-1 A, B, C and CI-2A), trypsin/α-amylase inhibitors CMa-e, barley dimeric 

α-amylase/trypsin inhibitor (BDAI), serine protease inhibitors (serpins or protein Z4, Z7), 

etc.
5,8

 A decrease of inhibitor amounts has been observed during germination by Maeda et 

al.
42

 Protease/α-amylase inhibitors are not extensively glycated during the malting and 

brewing process, nevertheless, BDAI represent an exception. This inhibitor probably 
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undergoes structural modifications including glycation and phosphorylation.
5,8

 Moreover, 

BDAI is present in the beer foam and contributes importantly to the beer foam stability.
36,37

  

Glycosylated members of the α-amylase inhibitor family (BMAI-1, BTAI-CMb) are known 

to act as sensitizing agents in humans upon repeated exposure and were found to be the 

strongest allergens associated to beaker‘s asthma disease.
43,44

 They are particularly reactive 

both in vivo and in vitro. These major glycoprotein allergens carry a single asparagine-linked 

complex glycan that contains both β(1-2) xylose and α(1-3) fucose. The xylosyl residue and, 

to a lesser extent, the fucosyl residue are key IgE-binding epitopes and largely responsible for 

the allergenicity of these and unrelated proteins from plants.
45,46

 

2.5.1.2. Serpins (serine protease inhibitors) - Protein Z 

Serine protease inhibitors can be classified in the group of PR-6 proteins (protease 

inhibitors).
5
 Serpins were not originally classified as PRs; however, for their probable 

defensive role hypothesized on the basis of irreversible inhibition of exogenous proteinases 

that break down seed storage proteins, cereal serpins have been considered as PRs. Protein Z 

is the most abundant malt and beer protein
8
 and has been the first characterized protein in 

beer. Protein Z with a molecular mass of about 43 kDa is composed of different isoforms with 

pI in the range of 4.5 – 5.5.
35

 Two main subfamilies were recognized, Z4 and Z7 (BSZ4, 

BSZ7), which are expressed from two related gene families. Protein Z4 is the highly 

predominant form accounting for approximately 80 % of all protein Z.
5,8

 Protein Z4 has also 

been identified as one of the major beer allergen.
47

 It was reported that protein Z4 showed 

positive correlations with beer foam stability, while protein Z7 showed negative correlation. 

Moreover, even a trace amount of another subfamily named protein Zx was detected in beer.
48

  

Protein Z contains 20 lysines per molecule and about 16 % of the lysine content is glycated 

during the brewing process through Maillard reaction.
8
 The glycated form of protein Z may 

improve the foam stability and glycation might prevent precipitation of protein Z during the 

wort boiling step as well. Moreover, protein Z contributes significantly to the lysine content 

of seed.
5,27

 

The proteolytic cleavage of protein Z in the reactive site loop located 37 amino acid 

residues from the carboxy-terminal was observed. It leads to formation of the C-terminal 

363 – 399 fragment with m/z 4.03 kDa. The protein chain cleaves probably due to the 

interaction between protein Z and serine proteases. Cleavage is accompanied 

by a considerable conformational change forming the heat and protease stable molecule 

of protein Z that survive the brewing process and is present in beer.
49,50

 

2.5.1.3. Non-specific lipid transfer proteins (ns-LTPs) 

LTPs constituting the group of PR-14 are ubiquitous plant lipid binding proteins named for 

their ability to mediate the transport of different classes of lipids between membranes in vitro. 

The biological role of ns-LTPs is still a matter of debate.
5,51

 Their role in intracellular lipid 

transfer is contrasted by findings that LTPs are extracellular secretory proteins. Currently, 

they are considered to play several in vivo roles, including inhibition of growth of bacterial 

and fungal pathogens, early recognition of pathogens, adaptation of plants to abiotic stress, 

or inhibition of cysteine proteinases. They are subdivided into two families: ns-LTP1 and 

ns-LTP2.
5,52,53
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ns-LTP1 

Non-specific LTP1, which was initially named probable amylase/protease inhibitor (PAPI), 

has been studied more thoroughly than ns-LTP2.
51,54

 It has been recognized to have a variety 

of in vitro capabilities, besides the transfer of lipids between membranes, also the inhibition 

of bacterial and fungal pathogens.
55

 LTP1 is an abundant protein of the aleurone layers from 

barley endosperm characterized by a pI of about 9 and consists of 91 amino acid residues for 

a molecular mass of 9.69 kDa. The protein consists of four α-helices and a C terminal arm 

(Figure 3), stabilized by four disulfide bonds forming a small hydrophobic cavity between the 

helices into which a different types of lipids can bind.
35,51,56

 LTP1 is glycated during the 

malting process due to Maillard reactions. Glycation could protect protein from precipitation 

on unfolding that occurs during wort boiling. Moreover, LTP1 is a highly stable protein that 

resists temperatures up to 100 °C. This stability may be important for the biological function 

of LTP1.
51

 

 

Figure 3: The three dimensional structure of barley seed ns-LTP1
5
 

Although LTPs typically bind fatty acids in a non-covalent way, covalently modified forms 

of LTP1 were also identified.
57

 First known modified form of LTP1, named LTP1b, was 

isolated from barley and beer extract and exhibit a molecular weight 294 Da higher than 

LTP1.
35

 The lipid-like molecule is esterically bound to Asp and was originally described by 

Lindorff-Larsen et al.
58

 as cis-14-hydroxy-10,13-dioxo-7-heptadecenoic acid (CHDH). 

Nevertheless, later Bakan et al.
57

 identified the lipid-like molecule as 9-hydroxy-10-oxo-

12(Z)-octadecenoic acid. LTP1b is formed during germination in a physiological process 

occurring in the endosperm, in contrast with the glycation detected only in the malted 

samples. According to Ţídková et al.
59

, this modification can be detected in the MS analysis 

of intact protein samples or after in-solution enzymatic digestion; however, no lipid-bound 

peptide was observed in the MS analysis of the in-gel digested LTP1 after sodium 

dodecylsulfate polyacrylamide gel electrophoresis (SDS-PAGE) separation because the 

presence of electrophoretic buffer, denaturing conditions and alkaline pH lead to hydrolysis of 

the ester bond.
59

 LTP1b is stable up to 60 °C, while reducing agents decrease its 

thermostability and reduced protein denatures in a few hours at the same temperature, 

as discovered by Matejková et al.
60

 In addition, also another isoform of LTP1 named LTP1c 

was observed in malt by Jégou et al.
54

. This isoform corresponds to a LTP1 protein with two 

adducts of 294 and 312 Da.
51
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Whereas the native barley seed nsLTP1 does not display any foaming properties, the 

corresponding beer protein is surface-active. LTP1 becomes a foam-promoting form after 

unfolding during wort boiling and this improvement is related also to glycation on malting 

and acylation on mashing. Foam promoting LTP1 form concentrates in beer foam and 

contributes widely to foam formation.
35,51

  

Although modified forms of ns-LTP1 are foam-promoting
52

, their increased amount in beer 

could be disadvantageous as well since they may be responsible for malt derived gushing 

as mentioned by Hippeli and Elstner.
61

 Nevertheless, no apparent correlation has been proved 

between gushing and nsLTP1 by Hégrová et al.
39

 Furthermore, barley LTP1 together with 

protein Z has been identified as the main beer allergens by Garcia-Casado et al.
47

 

ns-LTP2 

Non-specific LTP2 has not been studied as deeply as ns-LTP1. In contrast to ns-LTP1 

expressed late in grain development and in early stages of germination, ns-LTP2 is expressed 

during the early stages of grain development.
5
 It is a basic protein (pI ∼ 8) with a molecular 

weight of 7.11 kDa consisting of 69 amino acid residues. Ns-LTP2s display low sequence 

similarity to ns-LTP1s; however, an almost identical proportion of α-helices and random coils 

in ns-LTP2 and ns-LTP1 suggests that they have a similar fold. Compared to ns-LTP1, 

ns-LTP2 has higher lipid transfer activity and also is more stable. It is glycated during the 

malting as well.
35,52

 Though similar to ns-LTP1, the role of ns-LTP2 in relation to beer 

production and quality is unknown at this time. Nevertheless, ns-LTP2 is present in beer and 

beer foam and its foam-promoting properties may be similar to ns-LTP1.
8
 During the malting 

and brewing process, disulphide bonds in ns-LTP1 and ns-LTP2 are reduced and rearranged 

resulting in the formation of a dimer composed of ns-LTP1 and ns-LTP2 connected by at least 

one disulphide bond.
35,52

 

2.5.2. Hordeins 

Hordeins, alcohol-soluble prolamin fraction of barley proteins, are storage proteins 

of barley grain and the main protein fraction of barley endosperm. Depending on molecular 

weights, this protein family can be divided in four general classes:  

 γ hordeins – in some literature marked as A hordeins, sulphur-rich proteins 

of m/z less than 20 kDa, not considered as true storage proteins 

 B hordeins – sulphur-rich proteins of m/z 30 – 45 kDa  

 C hordeins – sulphur-poor proteins of m/z 49 – 72 kDa 

 D hordeins – high molecular weight prolamins with m/z of 100 kDa 

The B and C hordeins present the major sub-groups accounting for about 70 – 80 % and 

10 – 20 %, respectively, while γ and D hordeins are the minor components. Hordeins exist 

both in monomeric and aggregated forms.
8,9,62

 

Hordeins are present in the protein matrix that surrounds the starch granules within the cells 

of the endosperm. Degradation of the hordein in this matrix during malting is necessary 

to allow starch degrading enzymes access to the starch, which facilitates complete starch 

hydrolysis.
63

 Influence of hordeins on foaming is not well studied yet.
64

 During the brewing 

process, most of malt hordeins are disappeared. However, hordeins might be involved in beer 

haze formation, as found by Jin et al.
38

 In addition, Šalplachta et al. showed the potential 

of studying of hordein pattern for the discrimination of barley varieties.
62
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2.1. Protein extraction from plant tissues 

Plant protein extraction is the first and crucial step in proteomic studies. Plant tissues 

contain relatively low levels of proteins whose extraction can be difficult because of the 

presence of other compounds, such as cell wall and storage polysaccharides, lipids, 

or phenolic compounds.
23

 Moreover, wide range of plant proteins is present and these proteins 

require specific conditions for their extraction and purification, because their properties vary 

greatly.
65

 

The solubility of plant proteins is closely associated with their intracellular localization.
23

 

Therefore, extraction and fractionation of plant proteins on the basis of their solubility formed 

the basis for the first systematic attempt to proteins classification. The classification system 

of seed proteins is based largely on the work of Osborne
66

, who recognized that seed proteins 

differ in their solubility properties. He defined four groups that were extracted sequentially 

in water (albumins; comprise mostly enzymatic proteins), dilute salt solutions (globulins; 

generally occur in protein bodies), alcohol-water mixtures (prolamins; also found in protein 

bodies as true storage proteins) and dilute acid or alkali (glutelins; probably mainly structural 

proteins). All these fractions are well known as the ―Osborne fractions‖ or ―Osborne groups‖ 

and still form the basis for studies of seed proteins.
65,67,68

 The term ―hordein‖ became 

commonly used for the barley prolamin fraction.
69

 Terms albumin and globulin have become 

accepted into the general vocabulary of proteins chemists.
65

 

2.2. Protein separation 

The analysis of proteins requires methods for the separation of complex protein mixtures 

into their individual components. Protein separation methods can be both selective and 

non-selective. Non-selective separation techniques are used for fractionation of complex 

protein mixture. These methods are based on general protein properties, including their mass, 

charge, or solubility. By selective method, individual protein can be isolated from a mixture 

usually by techniques based on very specific protein properties, such as their adsorption 

characteristics, biological affinities for other molecules, binding specificity or biochemical 

function. These methods can be used for studying of protein interactions or functions.
1,3

 

Several separation techniques are usually used in sequence for protein purification due 

to the complexity of the protein or peptide mixtures.
1
 However, if more separation steps are 

involved, more proteins can get lost due to technical reasons. Furthermore, the analysis of one 

complex sample can take quite a long time. 

The concentrations of proteins are not evenly distributed within a sample. For all separation 

methods and for mass spectrometry it is very difficult to detect and analyze very low 

concentrated proteins in the presence of highly abundant proteins. Moreover, the complex 

protein samples have often limited stability because many proteins exhibit biological activities 

and some of them can modify other proteins in the sample mixture.
15

 

Many techniques can be used for separation of complex protein mixtures, but not all 

of these techniques are suitable for proteomics. Major requirements in proteomics include 

high resolution, high throughput, and the fractionation procedure should be compatible with 

analysis by mass spectrometry, the major technology platform for protein identification.
3
 

Before separation, it is necessary to learn as much as possible about the biochemical 

properties of a protein, such as molecular mass, isoelectric point (pI), solubility properties, 
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and denaturation temperature, to determine any unusual physical characteristics that will 

make separation easier.
1
 These physical and chemical differences are determined by the 

number, type, and order of amino acids in the protein, and by post-translational 

modifications.
3
  

According to the biochemical protein properties, protein separation techniques can be 

divided as follows: 

 Separation by differential solubility characteristics: Separation by precipitation 

exploits the differential solubility properties of proteins in solution, determined by 

the type and charge of amino acids in the molecule.  

 Separation by adsorption: Separation by adsorption is used in liquid 

chromatography methods and is based on differential affinity of the protein for the 

adsorbent or eluting buffer (ion-exchange chromatography, affinity 

chromatography). 

 Separation by size: Many techniques use the differential size of individual 

proteins, including size-exclusion chromatography or SDS-PAGE. Furthermore, 

dialysis and other membrane processes (ultrafiltration, nanofiltration or reverse 

osmosis) are used for protein purification and desalting.  

 Separation by electrophoresis: Electrophoresis is defined as the migration 

of charged molecules in a solution through an electrical field. Various types 

of electrophoresis are used for protein separation, including SDS-PAGE, isoelectric 

focusing or capillary electrophoresis.
1
 

The two major groups of techniques in proteomics are gel electrophoresis (GE) and liquid 

chromatography (LC). They are often used in two-dimensional arrangement where two 

different fractionation principles are employed one after another.
3
 

2.2.1. Separation by electrophoresis 

The principle of electrophoresis is the migration of charged particles in an electric field. 

The rate of migration of charged molecule depends on the strength of the electric field and 

the charge density of the molecule.
3
 The higher the net charge and the smaller the molecule, 

the faster is its electrophoretic migration. Electrophoretic methods can be applied for the 

separation of the components of a mixture, but also for creating characteristic images of 

a sample for differential analysis. 

Proteins and peptides are amphoteric substances. They can become positively or negatively 

charged, depending on their pI and the pH value of the environment. A protein is positively 

charged if solution pH is below its pI, and negatively charged if solution pH is above its pI. 

Thus, they will migrate towards the cathode or the anode, respectively. Electrophoretic 

separations are carried out in buffers with precise pH value and a constant ionic strength.
1,15

 

Electrophoresis of protein in the solution is not widely used because the electrophoresis 

zones are dispersed in the solution, or because the protein mixture will homogenize once the 

electric field is removed. These effects are minimized, if electrophoresis is carried out in very 

narrow vessels (capillary electrophoresis) or within a gel matrix (GE), which also allows the 

fixation of separated proteins in place when the procedure is complete. Gel matrices can be 

formed in glass tubes or more commonly as slabs between two glass plates. Polyacrylamide 

gel electrophoresis (PAGE) is one of the most widely used protein separation techniques that 

facilitate separation by sieving the proteins on the basis of their size. Gels with different pore 
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sizes can be produced easily and reproducibly by varying the concentration of acrylamide 

in the polymerization mixture.
1,3

 

In non-denaturing or native electrophoresis, proteins are separated in their native form 

based on charge, size, and shape of the molecule. Non-reduced samples are fractionated for 

some clinical applications, for instance detection of antibodies. However, denaturing 

electrophoresis is usually used for protein separation, mainly PAGE with an anionic detergent 

sodium dodecylsulfate (SDS). SDS-PAGE is the mostly applied electrophoretic method 

for protein analysis, used for separation of protein subunits based on their size (molecular 

weight) only, irrespective of charge.
1,15

  

2.2.1.1. SDS-PAGE 

The basis of the technique is the exposure of proteins to the reducing agent and the 

detergent SDS in a buffer. Reducing agents, such as mercaptoethanol (ME) or dithiothreitol 

(DTT), are used to reduce disulfide bonds within cysteines of protein subunit or between 

subunits. Therefore, proteins become completely unfolded and all quaternary structures are 

dissolved. Denatured proteins are then stoichiometrically binding to the detergent SDS that 

carries a large negative charge. SDS masks the charge of the proteins themselves and the 

formed anionic protein-SDS complexes have a reasonably constant net negative charge per 

unit mass. Consequently, all proteins including those with basic pIs will migrate towards the 

anode and therefore, proteins are separated on the polyacrylamide gel according to their 

molecular weights. The molecular weights of the sample proteins can be estimated with the 

help of co-migrated standards with known molecular weights, nevertheless SDS-PAGE 

allows only estimation of molecular mass of a protein and exact masses can be determined 

with mass spectrometry only.
 1,3,15

 

In the standard sample preparation procedure for 1D SDS-PAGE electrophoresis, proteins 

are boiled for approximately 3 minutes in the sample Tris-HCl buffer containing SDS, 

reducing agent (ME, DTT) and bromophenol blue. For vertical gels, the sample buffer must 

contain glycerol to prevent mixing of the sample with the upper buffer.
15

 Bromophenol blue, 

so-called tracking dye, migrate ahead of the proteins and is used to monitor the progress of 

a separation. After an electrophoresis run, the bands on the gels are generally visualized using 

a protein stain such as Coomassie Brilliant Blue or silver stain.
1
 Coomassie blue is the most 

commonly used protein stain after SDS-PAGE with a sensitivity approximately 100 ng per 

protein band. Gels are staining in a methanol-acetic acid mixture, used to precipitate 

the proteins within the gel and preventing them from floating away before analysis. Silver 

staining increases the level of sensitivity by the ability to detect 1 ng of protein in a band. 

Silver staining can be used to detection improvement instead of or after Coomassie blue 

staining.
70

 

Polyacrylamide gel 

The polyacrylamide gel matrix is formed by polymerizing acrylamide monomers and 

a small quantity of the cross-linking reagent N,N'-methylenebisacrylamide, in the presence 

of a catalysts tetramethylethylenediamine (TEMED) and ammonium persulphate as a source 

of free radicals. This standard catalyst system works only for gels containing neutral and basic 

buffers. Acidic gels are polymerized with alternative reagents and its preparation is more 

complicated because polymerization occurs very quickly and is difficult to control. Gels can 
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be made in the laboratory or purchased precast. Polyacrylamide gels must be polymerized 

in closed cassettes to exclude oxygen, which would interrupt the polymer chain formation. 

The polymerization efficiency is also influenced by the monomer concentration, the quality 

of the reagents, temperature, and pH value.
 1,15

 

The pore size of the resolving gel is selected based on the molecular mass of the proteins 

of interest. It is varied by altering the acrylamide concentration (T) and the degree of 

cross-linking (C).
1
 Generally, when T increases, the pore size decreases. In standard gels 

where T is 15 %, the minimum pore size is achieved when C is approximately 5 %.
3
 With 

higher C values, the gels become brittle and relatively hydrophobic.
15

 

Proteins are usually separated on resolving gels that contain 4 – 15 % of acrylamide. 

Concentration of 15 % T may be used for separation of proteins with molecular mass below 

50 kDa. Proteins greater than 500 kDa are often separated on gels with acrylamide 

concentrations below 7 %. A gradient gel in which the acrylamide concentration increases 

from top to bottom of the gel is often used to separate a mixture of proteins with a large 

molecular mass range.
1
 Gradients are prepared by continuously changing the acrylamide 

concentration in the polymerization solution while pouring the gel. The density of the highly 

concentrated solution is supplemented with glycerol so that the layers in the cassette will not 

mix.
15

 

To improve resolution of proteins within a complex mixture, discontinuous gel matrix 

is usually used, where a stacking gel is polymerized on the top of the resolving gel. The 

stacking gel contains a different buffer composition and has larger pore sizes than 

the resolving gel (usually 3 – 4 % T). As its name implies, it is used to stack or concentrate 

the proteins into very narrow bands prior to their entry into the resolving gel. Stacking gels 

are used for 1D separation, when the applied sample molecules are in liquid phase, while for 

2D electrophoresis in vertical systems, the stacking gel is not necessary.
1,15

 

2.2.1.2. Isoelectric focusing (IEF) 

Isoelectric focusing is usually the first dimension separation in 2D GE. In this process, 

proteins are separated on the basis of their net charge irrespective of their mass. Each protein 

is specified by pI value determined by the number and type of acidic and basic amino acid 

residues they contain. IEF is carried out in a pH gradient, allowing each protein to migrate to 

its isoelectric point, at which its pI value is equivalent to the surrounding pH and its net 

charge is zero. Therefore, each protein stops in the location of its isoelectric point in the gel. 

Diffusion still acts against this tendency to focus at a single position, but a protein diffusing 

away from its isoelectric point becomes charged and therefore moves back towards its focus. 

Although there may be an initial sieving effect which separates the proteins on the basis 

of their size, running the gel for a suitably long period of time ensures that all proteins reach 

their isoelectric points.
3
 

IEF can be performed on tube gels or on IPG strip gels that have recently replaced tube gels 

since they are easier to handle and give more reproducible separations. A pH gradient 

is formed using ampholytes, which are small polymers containing both positively and 

negatively charged groups. An ampholyte mixture that exhibits a range of pH values is added 

to the gel solution prior to polymerization. After the gel formation and current application, 

the ampholytes migrate to produce the pH gradient.
1,3
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2.2.1.3. Two-dimensional gel electrophoresis (2D GE) 

Isoelectric focusing and SDS-PAGE can be combined for separating very complex mixtures 

of proteins. This technique is called two-dimensional electrophoresis. First, proteins are 

separated in tube gels, or alternatively on immobilized pH gradient (IPG) strips, by isoelectric 

focusing according to their charge. The tube gel containing the separated proteins is then 

placed on top of an SDS-PAGE slab gel, and proteins are separated according to their mass. 

Contemporary standard 2D GE systems are capable of resolving approximately 2500 protein 

spots.
1,3

 

2.2.2. Liquid chromatography 

Any separation technique that distributes the components of a mixture between two phases, 

a fixed stationary phase and a free-moving mobile phase, is known as chromatography. As the 

mobile phase moves over the stationary phase, the components of the mixture can interact 

with the molecules of both phases. Molecules with the lowest affinity for the stationary phase 

will move the most quickly because they tend to remain in the solvent, while molecules 

with the highest affinity move the most slowly because they tend to stay associated with 

the stationary phase and are left behind. This results in the mixture partition into a series 

of fractions, which can be eluted and collected individually. 

In proteomics, LC is used more often than other chromatographic formats because of its 

versatility and compatibility with mass spectrometry. Contrary to gel electrophoresis, liquid 

chromatography is suitable for the separation of both proteins and peptides. Various LC 

methods can exploit different separation principles, such as size, charge, hydrophobicity and 

affinity for particular ligands. As well as is the case of electrophoresis, the highest-resolution 

separations are achieved when two or more separation principles are applied one after another 

in two-dimensional arrangement. 

Liquid chromatographs are often connected with UV (ultraviolet) detectors. Proteins are 

measured traditionally at 280 nm. At this wavelength, aromatic amino (primarily tryptophan 

and tyrosine) absorb best so proteins with few of these amino acids may not absorb 

as strongly as expected. Alternatively, the UV light at a wavelength of 214 nm is absorbed by 

the peptide bond and this detection yields much more sensitivity than 280 nm. Otherwise, 

chromatographs can be linked directly to electrospray ionization (ESI) mass spectrometers 

(LC-MS or LC-MS/MS) for fully automatic peptide separation and analysis.
1,3,71

 

2.2.2.1. Reversed phase chromatography 

Reversed phase separations are usually carried out using high performance liquid 

chromatography (RP HPLC). Reversed phase resin consists of hydrophobic ligands (such as 

C4 to C18 alkyl groups), so proteins (peptides) are separated according to their 

hydrophobicity. However, RP HPLC results in a quasi-mass-dependent separation because 

retention of molecules tends to increase with their molecular mass. Separation is performed in 

gradient elution that is achieved by gradually increasing the amount of an organic modifier in 

the elution buffer, which disrupts the hydrophobic interactions of proteins on the RP resin. 

Of all the chromatography techniques used in proteomics, RP HPLC is the most powerful 

method and provides the highest resolution.
3
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2.2.2.2. Size exclusion chromatography 

Size exclusion chromatography (SEC), also known as gel filtration chromatography, is used 

for separation of proteins (or peptides) according to their size. The column is packed with 

inert beads made of a porous compound such as agarose because this separative principle does 

not require any chemical interaction between the solutes and the stationary phase. Molecules 

larger than the pores in the beads are excluded, moving quickly through the column and 

eluting from the column in the shortest times. Commercial columns are able to separate 

protein or peptide mixtures in different size ranges.
 1,3

 

2.2.2.3. Affinity chromatography 

Affinity chromatography (AC) is based on the reversible interactions between the target 

molecules and the specific ligands immobilized on a stationary phase. The process usually 

consists of three steps: binding, washing and eluting. In the binding step, samples containing 

the target molecules are loaded onto the column and allowed to bind. In the washing step, 

un-bound components are washed off the column, while the target bound molecules are 

retained. In the eluting step, specific components in an eluting solution are used to break the 

target-ligand interactions, and consequently, the target molecules are eluted.
72

 

Several types of AC can be applied in proteomic studies. For instance, beads containing 

antibodies can be used to isolate a single protein or peptide from a complex mixture, and 

lectin affinity chromatography is widely used for glycoprotein or glycopeptide purification.
3
 

2.3. Protein identification by mass spectrometry 

Although several technologies have been developed for protein identification, current 

proteomic analysis would be impossible without recent advances in mass spectrometry. 

A mass spectrometer is an instrument that can measure the mass-to-charge ratio (m/z) of ions 

based on their motion in an electric or magnetic field. Sample molecules are converted into 

ions (positive or negative) in the gas phase and separated in a vacuum according to their m/z 

ratio. Molecular masses can be determined with a high degree of accuracy, allowing 

the determination of the sample molecular composition.  

Table 3: Three components of a mass spectrometer used in proteomics.
15

 

Ionization Separation Detection 

Ionization source Analyzer Detector 

MALDI 

ESI 

Time-of-flight (TOF) 

TOF/TOF 

Quadrupole 

Ion trap 

Orbitrap 

Hybrid combinations 
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Mass spectrometer typically consists of three components (Table 3): 

 source of ions – in a vacuum convert the analyte into gas phase ions which are 

accelerated in an electric field towards analyzer; 

 mass analyzer – separates ions according to their m/z ratios on their way to 

the detector; 

 ion detector – records the impact of individual ions.
3,15

 

The analysis of proteins and other macromolecules by mass spectrometry has been always 

difficult since larger molecules are broken up by the volatization and ionization process 

producing a collection of random fragments. It has changed in the nineties with the 

development of so-called soft-ionization methods that allow the ionization and detection of 

large, non-volatile and labile molecules by mass spectrometry.
 

In proteomics, two 

soft-ionization methods are widely used:
3,14

 

 matrix-assisted laser desorption/ionization (MALDI) – will be described in the next 

chapter (2.3.1); 

 electrospray ionization (ESI) – in this method, the analyte is dissolved and forced 

through a narrow needle held at high voltage. From the needle arises a fine spray 

of charged droplets that is directed into the vacuum chamber of the mass spectrometer. 

The droplets are then dried using a stream of inert gas, resulting in gas-phase ions that 

are accelerated through the analyzer towards the detector.  

MALDI is predominantly used for the analysis of simple peptide mixtures, such as the 

peptides derived from a single spot from a SDS-gel, whereas ESI is suitable for the analysis 

of complex mixtures. Moreover, ESI is often connected with liquid chromatograph because 

gas-phase ions are produced from solution in this technique.
3
 MALDI instrument can not be 

directly coupled to the liquid chromatographic techniques, but the LC-separated peptide 

or protein fractions can be spotted onto the MALDI target, and then analyzed in an ―offline‖ 

approach.  

While ESI produces mainly multiply protonated peptide ions [M + nH]
n+

, MALDI 

generates mainly singly protonated peptide ions [M + H]
+
, although multiply charged species 

are also sometimes observed. In the case of proteins, both singly and multiply charged ions 

can be generated in MALDI.
14

 

2.3.1. MALDI-TOF/TOF instrumentation 

MALDI-TOF/TOF is a very important proteomic tool. This configuration supports both MS 

and tandem MS/MS measurements in a single system.
15

 

2.3.1.1. MALDI ionization 

Before the analysis, the analyte is mixed with a large excess of an aromatic compound 

called matrix that can absorb light at the wavelength of the laser used with the mass 

spectrometer. The most commonly used matrices in proteomics are described in the chapter 

2.3.2.1. The analyte and matrix are dissolved in an organic solvent and placed on a metallic 

target (i.e. MALDI plate). The solvent evaporates, thus the analyte becomes incorporated into 

the crystal lattice of the matrix. The MALDI plate is then placed in the vacuum chamber of 

the mass spectrometer and a high voltage is applied. The crystals are targeted with a short 

laser pulse and the laser energy is absorbed by the crystals, which causes desorption and 

ionization of the matrix and analyte, either by protonation (positively charged ions) or 
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by deprotonation (negatively charged ions). The ions are then accelerated into the MS 

analyzer. Due to the pulsed nature of MALDI, it has been predominantly coupled with the 

time-of-flight (TOF) analyzer or configurations thereof.
3,15

 

2.3.1.2. Time-of-flight (TOF) analyzer 

TOF analyzer is a pulsed analyzer routinely coupled with a MALDI ion source. No electric 

field is required for separation and mass measurement is determined by measuring the 

time-of-flight of an ion in the analyzer region. The smaller the molecule, the faster it will 

travel the distance of the flight tube towards the detector.
 3,15

 

The linear TOF analyzer is the simplest form and exhibits the lower performance with 

respect to resolution and mass accuracy. It is shown in Figure 4 (the linear detector without 

the collision cell connection). The mass accuracy of a linear TOF instrument is poor. The 

performance of TOF analyzers was therefore improved by two developments: delayed 

extraction of ions from the source for a short period of time, and incorporation of 

a reflectron.
15

 

The reflectron (or ion mirror) was designed to re-focus the ions onto the detector.
14

 It is 

shown in Figure 4. Reflectron improves resolution in two ways: 

 by acting as an ion mirror reversing the trajectory of the ions in the flight tube and 

effectively increasing the length of the flight tube;  

 by reducing an ion‘s kinetic energy spread.  

Ions of the same mass formed in the source can have different kinetic energies when 

leaving the source. It depends on their position in the source when the accelerating voltage 

is applied. Consequently, ions of the same mass arrive at the detector at different times, thus 

reducing resolution and mass accuracy. A reflectron can accommodate these small differences 

in kinetic energy and greatly improve resolution and subsequently mass accuracy. Reflectrons 

are incorporated as standard in most commercial TOF mass spectrometers.
15 

2.3.1.3.  TOF/TOF analyzer 

In tandem mass spectrometry (or MS/MS), selected ions of individual m/z values are 

subjected to fragmentation. The first TOF analyzer selects the precursor ion, high energy 

collisions then occur within the collision cell, and the second TOF analyzer resolves the ions 

(Figure 4). Fragmentation is typically performed by collision induced dissociation (CID), 

a mechanism of molecular ions fragmenting in the gas phase. Peptide molecular ions are 

allowed to collide within a cell with neutral gas molecules (helium, nitrogen or argon). Some 

of the kinetic energy possessed by the molecular ion is converted into internal energy, which 

results in bond breakage and the fragmentation of the molecular ion into smaller fragments.  

A TOF/TOF analyzer coupled with a MALDI ion source enables the generation of PMF 

data and peptide sequence data in a single instrument. The configuration achieves high 

sensitivity and high resolution in both MS and MS/MS modes.
15 
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Figure 4: Schema of TOF/TOF analyzer
15

 

2.3.2. Applications of MALDI-TOF MS in proteomics 

In proteome studies, highly complex mixture of proteins is usually analyzed. Therefore, one 

or combination of several separation steps of proteins or peptides (mentioned in the 

chapter 2.2) are required prior to MALDI-TOF MS analysis.
14

 For successful protein 

identification, fractionated proteins are digested into peptides, most frequently using 

proteolytic enzymes. Then, peptides are purified and spotted with a suitable matrix on 

a MALDI target for further analysis by MALDI-TOF MS.
3
 

2.3.2.1. Sample preparation for proteomic analysis by MALDI-TOF MS 

Sample preparation is a crucial procedure in MALDI-TOF MS analysis of peptides and 

proteins. Protein or peptide samples need to be purified prior to MS analysis. If possible, 

volatile buffers, such as ammonium bicarbonate, should be used in the final stages of 

purification of proteins.
14,15

 

Protein cleavage 

The analysis of proteins by MALDI-TOF MS peptide mass mapping involves proteolytic 

degradation of proteins into peptides. Prior to proteolytic digestion, it is convenient to reduce 

the S–S bridges and S-alkylate the cysteine residues of proteins. This blocks their chemical 

reactivity and secondary structure formation, thus it increases the accessibility to digesting 

proteases and improves the detection efficiency of Cys-containing peptides 

in MALDI-TOF MS. Iodoacetamide and 4-vinylpyridine are good S-alkylating reagents.  

Trypsin presents the most often used proteolytic reagent. It is a highly active and specific 

protease, cleaving from C-terminal to Lys and Arg residues, to generate peptides within the 

mass range from 500 to 5000 Da that are suitable for PMF. Other enzymes suitable for protein 

proteolysis are endoproteases Lys-C, Asp-N and Glu-C. Chymotrypsin, proteinase K, and 

subtilisin are less-specific proteases which are helpful for proteolytic cleavage of very 

compact or stable protein structures.
14 

Chymotrypsin is frequently used as an alternative 

to trypsin, for example for studying of protein glycations. Since glycation occurring mostly 

at lysine, treatment with trypsin would lead to formation of relatively long glycated peptides 

that are more difficult for MS/MS fragmentation, as mentioned by Petry-Podgórska et al.
73

 

The proteolytic digest can be performed either in-solution or in-gel. For proteins separated 

on gel, the digestion is frequently performed while still in the gel, and subsequently, resulting 

peptides are extracted into the surrounding solvent by extraction procedure using acetonitrile 

and trifluoroacetic acid (TFA).
14
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Chemical methods of protein cleavage are possible as well, but are less commonly used. 

They are often used for specific applications, where the enzymatic proteolysis is not 

suitable.
14,15

 

Sample purification 

Desalting and concentrating of protein or peptide samples are appropriate prior 

to MALDI-TOF MS analysis. It is also important to remove all contaminants, such as ionic 

detergents (SDS), which could interfere with the formation of analyte-matrix crystals during 

sample preparation. Especially if only small amount of material are available, miniaturized 

solid-phase extraction (SPE) methods are recommended. Miniaturized SPE columns can be 

purchased ready-made, or custom-made using Eppendorff GELoader tips packed with proper 

resin. Reversed phase C18 resin is suitable for protein or peptide purification, whereas 

phosphopeptides are retained by IMAC or TiO2, and glycopeptides by graphite or HILIC.
14,15

 

MALDI matrices 

Before mixing the protein or peptide sample with MALDI matrix, the pH should be 

adjusted to less than 3 by addition of TFA to obtain a good crystallization of matrix and 

analyte.
14

 The most commonly used matrices in proteomics are: 

 α-cyano-4-hydroxycinnamic acid (CHCA) is typically the standard matrix for 

a tryptic digest and affords high sensitivity for the detection of peptides; 

 2,5-dihydoxybenzoic acid (DHB) enables peptide analysis as well as detection 

of proteins and the analysis of oligosaccharides released from glycoproteins; 

 sinapinic acid (SA, 4-hydroxy-3,5-dimethoxycinnamic acid) is suitable for analysis 

of proteins and large polypeptides.
15

 

The quality of measured MALDI-TOF mass spectra are significantly influenced by many 

factors, including choice of suitable matrix, matrix and sample concentrations and 

matrix/sample ratio, pH adjustment crystallization conditions, or the use of additives.
74,75

 

2.3.2.2. Peptide mass mapping 

MALDI-TOF MS analysis of a digested protein provides a spectrum of peptide peaks, thus 

a list of peptide mass called fingerprint. For the protein identification, individual peak masses 

are compared with theoretical peptide masses of considered protein in a database, calculated 

from theoretical cleavage with used enzyme (Figure 5). This type of MS-based protein 

identification strategy is known as peptide mass fingerprinting (PMF). MS analysis of 

peptides derived from a protein by enzymatic digestion also reveals the presence of 

a chemical modification by a mass increment or a mass deficit relative to the expected masses 

of the unmodified peptides.
14 

However, MALDI-TOF MS PMF is not a suitable method for 

protein identification when a complex mixture is under investigation. In this case, tandem 

mass spectrometry MS/MS is almost exclusively required.
15
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The PMF technique is very robust because the masses of intact peptides are extremely 

discriminatory. Nevertheless, the probability of finding a matching protein depends on: 

 the quality of the experimental data, involving the quality and relative intensity of 

the peaks in the mass spectrum, the mass accuracy of the instrument, the coverage 

of the protein, and possible interfering factors such as post-translational 

modifications and mis-cleavages; 

 the availability of sequence information for the organism from which the 

experimental sample was obtained.
3
 

 

Figure 5: Principle of protein identification by MALDI-TOF MS PMF.
14

 

HPLC separation of peptides is sometimes necessary prior to MALDI-TOF MS for 

detection and characterization of all peptides in a mixture. In theory, all peptides should be 

present in equal concentration in a protease digest. However, this is not reflected in 

MALDI-TOF spectra for several reasons. The ionization efficiency of different peptides can 

vary and certain peptides are not detected when present in a peptide mix. As an example, 

arginine-containing peptides are found to ionize better than arginine-deficient peptides.
14

 

2.3.2.3. Tandem mass spectrometry (MS/MS) 

Where peptide mass fingerprinting is insufficient for identification of any proteins present 

in a given sample, tandem mass spectrometry (MS/MS or analysis of fragmentation ions) can 

be applied. The fragment CID spectrum of one or more individual peptides may provide 

important additional information.    



34 

 

These data can be used in following ways:  

 protein identification – correlative database searching of proteins whose peptides 

would likely yield similar CID spectra under the same fragmentation conditions; 

 deducing partial de-novo peptide sequences by interpretation of the peaks of the 

mass spectrum (manually or automatically). Acquired sequences can be 

consequently searched in database. The advantage of both these approaches is that 

correlative searching is not limited to databases of full protein sequences; 

 detection and localization of post-translational modifications.
3,14

 

2.3.2.4. Peptide Sequencing by MALDI-TOF MS/MS 

Traditionally, proteins were characterized by de-novo sequencing using automated Edman 

degradation and amino acid composition analysis. Currently, these techniques tend to be 

replaced by MS which provides more flexibility and sensitivity and is applicable to the 

analysis of protein and peptide mixtures. MS/MS is very powerful for peptide characterization 

and identification via sequencing and sequence database searching.  

Since the fragmentation produces various set of ions, the interpretation of CID spectra is 

difficult. As mentioned previously, MALDI produces mainly singly protonated peptide ions 

[M + H]
+
. Fragments resulting from low-energy CID are shown in Figure 6. The most 

efficient is the cleavage at the amide bond that results in y- and b-ions (according to the 

Roepstorff/Fohlman nomenclature), depending on which part of the peptide will retain the 

charge: 

 yn-ions – the charge is retained on the C-terminal fragment (n is the number 

of residues in the fragment) and yn-ions will contain the C-terminus of the peptide 

and extensions from this residue; 

 bn-ions – the charge is retained on the N-terminal fragment and bn-ions will contain 

the N-terminal amino acid and extensions from this residue.
14,15

 

 

Figure 6: Nomenclature for peptide sequencing. Fragments resulting from backbone 

cleavages are mainly observed when MALDI peptide ions are fragmented in low-energy CID 

tandem mass spectrometers.
14

 

The mass difference of yn and yn+1 corresponds to the mass of the amino acid residues and 

can therefore be used for peptide sequence deducing. Upon low-energy CID of the peptides, 

the dominating ions-series will be a, b and y fragments.
14

 The masses of individual amino acid 

residues and their single letter abbreviations used in sequencing are shown in the chapter 2.1 

in the Table 1. From this table it is evident that two pairs of residues have very similar (Gln 

and Lys) or identical masses (Leu and Ile).
3
 The isobaric residues Leu and Ile can be 

differentiating at higher collision energies, when the peptide is additionally fragmented at 
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the amino acid side-chains.
15

 Moreover, multiple breakages producing internal fragments 

of several contiguous amino acids as well as immonium ions representing single amino acids 

may also be observed in the fragment spectrum.
3
 

2.3.2.5. Protein quantification using mass spectrometry 

Mass spectrometry can be also used for relative of absolute protein quantification that can 

be performed using stable isotope labelling or by a non-labelling software approach. Stable 

isotope labelling has been used in mass spectrometry for a long time. Chemically identical 

analytes with a different stable isotope composition can be separated using mass spectrometry 

due to the mass difference associated with the different isotopes. The ratio of the different 

analytes signal intensity is indicative of their relative abundance. The most common methods 

involve incorporation of stable isotopes into the protein/peptide analyte using isotope coded 

affinity tags (ICAT
TM

), isobaric tags for relative and absolute quantification (iTRAQ), and 

stable isotope labelling with amino acids in cell culture (SILAC). While ICAT
TM

 and SILAC 

measure the relative abundance in MS mode, iTRAQ measures the relative abundance 

in MS/MS product ion mode. 

The iTRAQ reagents are designed to allow simultaneous labelling of up to four samples 

with four reagents of the same mass (isobaric). The iTRAQ reagent consists of three 

components:  

 a reporter group (with four different masses); 

 a balance group (for balancing the reporter group mass); 

 N-hydroxysuccinimide ester group that reacts with primary amines at the peptide 

amino-termini and lysine side-chains. 

Fragmentation of these four tags in MS/MS produces four reporter ions (m/z 114.1, 115.1, 

116.1, 117.1 Da) which are used for quantification of the four samples.
15

 

2.4. Analysis of protein post-translational modifications (modificomics) 

The comprehensive analysis of post-translational modifications is essential for a true 

understanding of a cell‘s biology.
16

 Modificomics is the most frequently studied area of 

interest in proteomics research since PTM information cannot be determined at the DNA 

level, but is probably also the most difficult.
15,20

 Each protein could potentially be modified 

in different ways; however, it is not necessary that such a modification will take place.  Most 

PTMs are therefore discovered accidentally when individual proteins, complexes or pathways 

are studied.  

Formerly, the analysis of post-translational modifications at the proteomic level was limited 

because of the lack of suitable methods.
3
 Theoretically, it can be simple to localize 

the modifications by measurements of increase or decrease the molecular mass. Still, there are 

many technical challenges such as ion suppression, purity and instability of the modified 

peptides, sequence coverage, and quantification that together make the mapping of PTMs 

difficult.
76 

However, many of the techniques can now be adapted for this type of experiment.
3
 

The development of chemical tagging and enrichment methods, in combination with 

an advance in MS instrumentation, would improve the sensitivity and accuracy for the 

determination of PTMs. In contrast to the progress made in animal and human modificomics, 

there have been relatively few studies in plant modificomics.
76
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The key issue in PTM analysis is the enrichment of the modified protein or peptide from 

a complex mixture because modified proteins are often expressed with low abundance
15

 and 

without enrichment, mass spectrometric analysis has low efficiency to detect PTM proteins 

or peptides. The most commonly used enrichment methods include: affinity enrichment (e.g. 

lectin affinity used for protein glycosylation, antibody-based western blot analysis), chemical 

derivatization or ionic interaction-based enrichment (e.g. immobilized metal-affinity 

chromatography IMAC and titanium dioxide used for protein phosphorylation).
17

 

2.4.1. Analysis of N-glycoproteins 

Glycoproteomics is a relatively new sub-discipline of proteomics and the technology 

for glycoprotein characterization is still in the early stages of development.
3
 The analysis of 

the whole glycoproteome of a plant extract involves the determination of: 

 which genes encode the glycoproteins; 

 which sites of the potential N-glycosylation sites are actually glycosylated; 

 structure of the attached glycans. 

Such identifications have already been realized in animal cells, while plant glycoproteome 

is examined to a lesser extent.
23

 

Conventional glycoanalytic techniques are laborious and time-consuming because multiple 

steps are necessary. The enrichment of glycoproteins (or glycopeptides after digestion) from 

a complex mixture is required. The most common approach in characterizing N-linked 

glycosylation involves the release of glycans from the isolated glycoprotein because direct 

and simultaneous analysis of both the protein and glycan part is difficult. Proteins with 

relatively simple oligosaccharide chain can be easily studied by matrix-assisted laser 

desorption/ionization MALDI-TOF MS, for example peptides with mass shifts of + 162 Da 

or multiples thereof that are indicative of glycated proteins modified with hexose sugars. 

However, large N-glycan-substituted peptides are difficult to study by MALDI-TOF MS 

because of their large mass falling outside the optimal detection limit, and their heterogeneous 

nature resulting in broad peaks.
3,77

 Glycopeptides also often exhibit poor ionization efficiency 

in comparison to non-glycosylated peptides, leading to suppressed signals and decreased 

detection sensitivity. Therefore, glycoproteins needs to be digested using some non-specific 

protease generating shorter fragments, and separated from non-glycosylated peptides via 

chromatographic or other purification methods.
77

 

2.4.1.1. Lectin affinity enrichment 

Glycoprotein enrichment is generally carried out by lectin-affinity chromatography. Lectins 

are plant proteins able to specifically bind oligosaccharide moieties.
3
 Lectin-carbohydrate 

interactions are mainly reversible and can be inhibited by the inhibiting sugar. This makes 

lectins ideal candidates as affinity ligands in affinity purification of glycoconjugates.
72

 Many 

lectins are available that have very specific ligands, but only a few of them are available for 

the detection of plant glycans. The summary of lectins used for plant glycans enrichment is 

present in the Table 4.
3,23
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Table 4: Lectins used for plant glycans enrichment.
23

 

lectin specificity sugar inhibitor 

concanavalin A (ConA) 

from Canavalia ensiformis 

α-D-mannose 

α-D-glucose 
methyl α-D-mannopyranoside 

Galanthus nivalis 

agglutinin (GNA) 
terminal  α1-3 mannose methyl α-D-mannopyranoside 

wheat germ agglutinin (WGA) 

from Triticum aestivum 

terminal GlcNAc 

internal chitobiose units 

GlcNAc 

chitotriose, chitobiose 

 

Concanavalin A (ConA), one of the most well characterized and widely used lectins, is 

derived from Canavalia ensiformis (Jack bean) seeds. It binds to α-mannose, and to α-glucose 

with weaker affinity. At neutral and alkaline pH, ConA exists as a tetramer of four identical 

subunits (Figure 7), while below pH 5.6, ConA dissociates into dimers. Divalent metal ions 

such as calcium (Ca
2+

) or magnesium (Mg
2+

) need to be present to keep ConA active for 

its binding to carbohydrates.  

 

Figure 7:  Crystallographic structure of ConA - the four monomer units, while each of them 

can bind calcium and manganese ions.
72

 

Usually high-mannose type N-glycans bind to ConA strongly, and some hybrid type 

glycans can bind to ConA with high affinity as well, while complex type glycans usually have 

very weak affinity towards ConA.
72

 In addition to glycoprotein enrichment, lectin-affinity 

chromatography is also useful for the purification of glycopeptides following proteolytic 

digestion, or for the purification of glycans.
3
 

2.4.1.2. Deglycosylation and glycan analysis 

Releasing of glycan from a glycoprotein or glycopeptide (i.e. deglycosylation) can be 

achieved in a single step using several enzymes. Endoglycosidase H (Endo H) is able 

to release high-mannose type N-glycans only. Endo H hydrolyzes the glycosidic bond 

between the two GlcNAc residues on the core of the N-glycan. Peptide-N-glycosidases 

(PNGases), PNGase F and PNGase A, hydrolyze the bond between the Asn of the peptide 

backbone and the proximal GlcNAc of the oligosaccharide part, thus the Asn residue is 

deamidated to Asp. Since the deglycosylated peptide mass is only 1 Da higher compared to 

the predicted mass of the unmodified peptide, this treatment is useful for mass spectrometry 

glycoprotein identification. PNGases have specific activity for both high-mannose type and 
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complex type N-glycans. Nevertheless, PNGase F does not release N-glycans containing 

α1-3 fucose residue linked to the proximal GlcNAc, thus the alternative PNGase A must be 

used. Nevertheless, PNGase A is almost only efficient on glycopeptides and therefore requires 

the proteolytic digestion of the glycoprotein prior to deglycosylation.
3,23

 

There are several studies published, where the in-gel or in-solution deglycosylation 

of proteins or peptides were used. For instance, Songsrirote et al.
78

 and Küster et al.
79

 

successfully performed the in-gel protein deglycosylation. Songsrirote et al.
78

, Yu et al.
80

, 

Laštovičková et. al
81

, Küster et al.
79

 or  Devakumar et al.
82

 performed the in-solution 

deglycosylation of glycoproteins and Liu et al.
83

 performed the in-solution of glycopeptides 

after trypsin digestion. 

2.4.1.3. Glycopeptide analysis 

The direct analysis of intact glycopeptides by mass spectrometry offers sequence 

information on both peptide and glycan moiety, and the detailed knowledge of protein 

glycosylation at the proteomescale is becoming an important aspect of post-genomic research. 

However, this method has so far been less commonly used. The analysis of glycopeptides 

after proteolytic digest without any pretreatment is difficult because non-glycosylated 

peptides interfere with ionization of glycopeptides and cause the considerable ion 

suppression. Moreover, several different glycoforms (one glycosylation site carries 

a multitude of glycans) can be present in a relatively low concentration in the total peptide 

pool. Therefore, the removing of non-glycopeptides from the proteolytic digest is necessary 

for efficient analysis. 

Lectin-affinity chromatography is often used to glycopeptides enrichment with the 

advantage of the relatively broad specificity of lectins. Alternatively, approaches based on 

general physical and chemical properties of glycopeptides are valuable. Glycopeptides are 

in general more hydrophilic than non-glycosylated peptides, therefore, the enrichment method 

based on hydrophilic interaction with matrices such as cellulose or Sepharose, or hydrophilic 

interaction-liquid chromatography (HILIC; or normal phase-chromatography) can be 

performed. In addition, glycopeptides can be significantly enriched by size exclusion 

chromatography because most tryptic glycopeptides in a complex peptide/glycopeptide 

mixture have a relatively high mass. Glycopeptides are often purified on porous graphitized 

carbon resin; however, this stationary phase is not suitable for selective capturing 

of glycopeptides from proteolytic digests because it binds strongly to non-glycosyated 

peptides.
84,85
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Figure 8: Positive-mode MALDI–TOF/TOF MS fragmentation of glycopeptides; a) schematic 

representation of the fragmentations occurring near the innermost GlcNAc with retention of 

the intact peptide moiety; b) characteristic fragment pattern for non-core-fucosylated N-

glycopeptides, and c) core-fucosylated N-glycopeptides.
84

 

MALDI-TOF/TOF MS of N-glycopeptides results in following fragment ion signals 

(Figure 8):  

 [Mpep + H − 17]
+
 - prominent signal that arises from the cleavage of the side-chain 

amide bond of the glycosylated asparagine 

 [Mpep + H]
+
  

 [Mpep + H + 83]
+
 - a 

0,2
X-ring cleavage of the innermost N-acetylglucosamine 

 [Mpep + H + 203]
+
 - Y-type cleavage of the chitobiose core in case of a non-

fucosylated core 

 [Mpep + H + 349]
+
 - Y-type cleavage of the chitobiose core in case of a 

monofucosylated core 

 peptide bond cleavages - predominantly y-type and b-type fragment ion signals, 

occasionally deamination or elimination of water 

Glycopeptide-marker ions in CID spectra are usually low-molecular-weight oxonium ions 

of m/z 204 (GlcNAc), m/z 186 or m/z 168 (elimination of 1 or 2 water molecules from the 

GlcNAc oxonium ion), and m/z 366 (Man1GlcNAc1), among others.
84

 

  



40 

 

3. AIMS OF THE THESIS 

The main goal of the thesis is to investigate barley proteins and their changes that occur 

during the malting and brewing process. In addition, attention is paid to barley protein 

post-translational modifications, namely enzymatic N-glycosylations and non-enzymatic 

glycations. The particular aims are formulated as follows: 

 

 The identification of water-soluble proteins by MALDI-TOF MS in barley grain and 

malt and investigation of the protein changes during individual steps of the malting 

and brewing process using various proteomic separation techniques.  

 The monitoring of low-molecular weight water-soluble proteins and their changes. 

 The comparison of various barley varieties, including those allowed for the Czech 

beer production, variety with well-proven malting properties, as well as one 

non-malting variety. 

 The analysis of barley alcohol-soluble proteins (hordeins) and study of their changes 

during malting.  

 The investigation of quantitative changes of selected proteins during malting using 

the iTRAQ method. 

 The investigation of non-enzymatic glycation of barley water-soluble proteins 

formation during malting.  

 The analysis of glycosylated barley water-soluble proteins. The identification of 

these minor proteins after their enrichment using the ConA affinity chromatography.  

 The optimization of analysis of the oligosaccharide part of glycosylated proteins. 
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4. EXPERIMENTAL 

4.1. Chemicals 

All chemicals used were purchased through the corporation Sigma-Aldrich (Schnelldorf, 

Germany) or Fluka (Buchs, Switzerland), unless otherwise stated. Acrylamide, SDS, 

molecular weight standard (broad range) for SDS-PAGE, Laemmli Sample Buffer, Bio-Safe 

Coomassie, and ReadyPrep 2D Starter Kit were obtained from Bio-Rad (Philadelphia, PA, 

USA). Trypsin and chymotrypsin (sequencing grade from bovine pancreas) were obtained 

from Roche Diagnostics (Manheim, Germany). MALDI matrices, namely CHCA, DHB and 

SA were obtained from LaserBio Labs (Sophia-Antipolis Cedex, France). 

4.2. Samples 

Barley grain, grain from 1
st
 to 5

th
 day of malting, green malt and malt, as well as sweet 

wort, wort and green beer samples, were obtained from RIBM, Brno, CZ. Malt was prepared 

according to the micromalting laboratory method traditionally used in the RIBM
86

. Barley 

was steeped and germinated for 144 h at 14.5 °C. Aliquots were collected each 24 hours 

during the malting and dried for 4 h at 80 °C to prevent biochemical changes. Green malt was 

dried for 22 h at the temperature increasing from 50 °C to 80 °C. The grain samples were 

milled in a rotating grinder and obtained flour was used for protein extraction. Sweet wort, 

wort and green beer liquid samples were freeze dried for further analysis. 

Grain and malt of six spring 2-row certified barley varieties were investigated (Table 5). 

Jersey is a representative of a very good malting barley variety, recommended for malt export. 

Tolar, Blaník, Bojos and Malz are among varieties allowed for production of beer labelled 

with PGI Czech beer. AF Lucius is a non-malting hull-less variety grown at the Experimental 

Station of Mendel University in Ţabčice near Brno (CZ). The name AF Lucius was registered 

in 2009, before that, this variety was known as experimental line KM 1910.
87

 

Table 5: Summary of studied barley varieties
87

 

Barley variety Country of origin Year of registration 

Jersey NL 2000 

Tolar CZ 1997 

Malz CZ 2002 

Bojos CZ 2005 

Blaník NL 2007 

AF Lucius CZ 2009 
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4.3. Protein extraction 

Proteins were extracted from 50 mg of milled barley sample twice with 0.5 mL of suitable 

solvent (or in larger quantities in the same sample-to-solvent ratio). Protein albumin fraction 

was extracted with deionized water, and alcohol-soluble prolamin fraction (hordeins) with 

60% ethanol and 2% DTT. Extractions were carried out in the shaker for 30 min at the room 

temperature. The mixtures were centrifuged in MiniSpin plus centrifuge (Eppendorf, 

Hamburg, Germany) at 14,000 rpm for 10 minutes and the two supernatants from one sample 

were combined. Water-soluble extracts were lyophilized, whereas alcohol-soluble extracts 

were dried down in SpeedVac Concentrator 5301 (Eppendorf). 

4.4. Protein separation 

4.4.1. Electrophoretic separations 

4.4.1.1. 1D GE – SDS-PAGE 

Proteins were separated using the Mini-PROTEAN system (Bio-Rad) on 10-well gels, 

either on precast Tris-HCl linear gradient polyacrylamide gels 4 – 20 % (Bio-Rad), or on 

manually prepared linear gels (with 12 or 15 % of acrylamide). The resolving gel was 

prepared using following solutions: acrylamide/bisacrylamide solution, 10% SDS, 750 mM 

Tris-HCl buffer (pH 8.8), 10% ammonium persulphate and TEMED. After resolving gel 

polymerization, the focusing gel was prepared using the same solutions, only in the buffer 

of different pH (250 mM Tris-HCl, pH 6.8). The acrylamide concentration of 3 % was used. 

A comb was inserted on the top of the focusing gel to create the sample wells.  

For gel electrophoresis, protein lyophilized extracts were dissolved in Laemmli sample 

buffer (62.5 mM Tris-HCl, pH 6.8, 2 % SDS, 25 % glycerol, 0.01 % Bromophenol Blue; 

mixed with β-mercaptoethanol in the ratio 15:1) and boiled for five minutes in a water bath. 

For example, lyophilized extract from 50 mg of milled barley sample (approximately 4 mg) 

was dissolved in 200 μL of sample buffer. Subsequently, individual samples were loaded on 

the gel in each comb (usually 8 – 12 μL). Protein standard solution (broad range, Bio-Rad) 

was loaded in at least one comb. Separation was performed in running buffer (composed of 

0.025 M Tris, 0.192 M glycine and 0.1% SDS) at constant voltage (160 V for 2 gels).  

After gel electrophoresis, gels were fixed using 12% trichloracetic acid (TCA) to increase 

the staining sensitivity by removing of SDS.  Gels were washed in water and the protein 

visualization was carried out using Bio-Safe Coomassie stain. Gels were stained overnight 

with gentle agitation. After discarding of the staining solution, the stained background was 

washed with water. 

4.4.1.2. 2DGE – IEF connected with SDS-PAGE 

2D gel electrophoresis was performed using ReadyPrep 2D Starter Kit (Bio-Rad), 

ReadyStrip IPG strips 7 cm, pH 3 – 10 nonlinear (Bio-Rad) and 4 – 20 % Mini-Protean TGX 

gel (Bio-Rad). Aqueous extract of barley grain (variety Bojos) was dialyzed against distilled 

water in 3.5 kDa molecular weight cut-off Membra-Cel dialysis tubing (Serva, Heidelberg, 

Germany) and lyophilized. Purified grain extract (1.2 mg) was dissolved in 500 μL 

of rehydration/sample buffer containing 8 M urea, 2% CHAPS, 50 mM DTT, 0.2% (w/v) 
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Bio-Lyte 3/10 ampholytes, Bromphenol Blue (trace). IPG strip was rehydrated (for sample 

loading) overnight using 125 μL of reconstituted sample. Then, IPG strip was placed in the 

focusing tray and IEF was running according the program described in the Table 6. 

The maximum current of 50 μA/strip and cell temperature of 20 °C was set. 

Table 6: Running program of the IEF separation 

 voltage [V] time [hrs:min] ramp 

step 1 50 2:30 linear 

step 2 100 1:00 linear 

step 3 150 1:00 linear 

step 4 600 0:50 linear 

step 5 1000 0:45 linear 

step 6 1500 0:40 linear 

step 7 4000 0:50 linear 

step 8 4000 until stopped rapid 

 

After IEF, IPG strips were equilibrated using equilibration buffers containing 6 M urea, 2% 

SDS, 0.375 M Tris-HCl (pH 8.8), and 20% glycerol. First, the equilibration buffer I with 

2% (w/v) DTT was used for proteins reduction, and then the equilibration buffer II with 2.5% 

(w/v) IA was used for thiol groups of cysteines alkylation. IPG strip was washed in the 

running buffer for SDS-PAGE and using the agarose solution inserted on the Mini-Protean 

TGX gel. Gel elecrophoresis was performed at constant voltage of 160 V.  

Separated proteins on the gel were stained by SYPRO Ruby protein gel stain according 

to the manual. After electrophoresis, gel was fixed twice for 30 minutes in the fix solution 

(50% methanol, 7% acetic acid). After three 10 minutes water washing steps, gel was agitated 

on a orbital shaker overnight in SYPRO ruby gel stain (Molecular Probes, Eugene, OR, 

USA). Stained gel was washed for 30 minutes in the wash solution (10% methanol, 7% acetic 

acid). Proteins were visualized by UV light and excised using Bio-Rad ExQuest spot cutter. 

4.4.2. HPLC separations of proteins 

HPLC proteins separations were performed on 1100 Series chromatograph equipped with 

diode array detector (Hewlett-Packard, Palo Alto, CA, USA). For all chromatographic 

separations, lyophilized barley extracts were dissolved in the initial mobile phase in the 

concentration of 50 mg/mL, centrifuged at 5.000 g for 2 min and the supernatant was filtered 

through a 0.45 μm PVDF Millex syringe filter units (Millipore, Billerica, MA, USA). The 

injection loop of 50 μL was used. Proteins were detected using UV light at 214 nm. Acquired 

data were processed using ChemStation software (Hewlett-Packard).   
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4.4.2.1. C18 RP HPLC 

Reversed phase C18 liquid chromatography separation was carried on C18 column 

Poroshell 300SB (2.1 x 7.5 mm, 5 μm; Agilent Technologies, Santa Clara, CA, USA). 

Chromatographic separation was performed using the linear gradient of 10 – 80% acetonitrile 

(ACN) in 0.1% TFA for 4 min. The flow rate was set up to 1 mL/min and the column 

temperature to 70°C. Individual obtained fractions were collected, concentrated in Speed-Vac 

and lyophilized. 

4.4.2.2. SEC HPLC 

Barley proteins were separated on size exclusion column BioSEC-3 (7.8 x 150 mm, 3 μm; 

Agilent Technologies) isocratically using 150 mM phosphate buffer (pH 7.0) as the mobile 

phase. The flow rate was set up to 0.5 mL/min and column temperature to 25 °C. Individual 

obtained fractions were collected, concentrated in Speed-Vac and lyophilized. 

4.4.2.3. HPLC affinity chromatography on ConA monolithic column 

The enrichment of barley glycoproteins was performed on ProSwift monolithic ConA-1S 

affinity column, 5 x 50 mm (Dionex, part of Thermo Fisher Scientific). First, glycosylated 

proteins were bound to lectin stationary phase in eluent A consisting of 50 mM sodium 

acetate, 0.2 M sodium chloride, 1 mM calcium chloride and 1 mM of magnesium chloride 

(pH 7.0). After 10.5 minute, bound glycoproteins were released using eluent B pH 7.0 

containing 125 mM methyl-α-D-mannopyranoside (α-MMP) in eluent A. The flow rate was 

set up to 0.5 mL/min and column temperature to 25 °C. Separation was repeated several times 

and collected proteins of unbound and bound fractions were dialyzed against distilled water 

using Slide-A-Lyzer Dialysis Cassettes (Thermo Fisher Scientific, Waltham, MA, USA) with 

3.5 kDa cut-off, concentrated in Speed-Vac and finally lyophilized. 

4.4.3. ConA affinity chromatography 

Affinity chromatography was performed on manually prepared columns: a plastic column 

(maximal volume of 5 ml, Mo-BiTec, Goettingen, Germany) packed with 2ml of ConA bound 

to agarose. Each column was used only for one type of sample (grain or malt). The loading 

buffer (used also for equilibration and washing) was composed of 0.1 mol/L Tris (pH 7.8), 

0.5 mol/L NaCl, 1 mmol/L MnCl2 and 1 mmol/L CaCl2. The elution buffer differed only 

by the addition of D-glucose in the concentration of 0.5 mol/L. 

Aqueous extract from 1 g of barley grain and malt (variety Jersey) was filtered using 

a 0.45 μm PVDF microfilter and lyophilized. Proteins were resuspended in 2 mL of loading 

buffer, sonicated and filtered again. After column equilibration (with 10 mL of loading 

buffer), 1 mL of sample was loaded on the column and washed with 10 mL of loading buffer. 

Subsequently, the second half of the sample was loaded and the column was washed with 

20 mL of loading buffer. The unbound protein fraction was collected. Then, bound proteins 

were washed of the column using 10 mL of elution buffer and collected. Both bound and 

unbound protein fractions were dialyzed against deionized water in 14 kDa molecular weight 

cut-off dialysis tubing (P-Lab, Prague, CZ), concentrated in SpeedVac and lyophilized.  
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4.4.4. HPLC separation of glycans 

HPLC glycans separations were performed on 1100 Series chromatograph 

(Hewlett-Packard) coupled with an ion-trap mass spectrometry detector Esquire LC equipped 

with electrospray ion source (Bruker Daltonics, Bremen, Germany). Prevail Carbohydrate ES 

column (150 x 2 mm, 5 μm) obtained from Grace Davison Discovery Sciences (IL, USA) was 

used for glycan separation. The samples were dissolved in 25 μL of 50% ACN and 1 μL or 

3 μL of sample was loaded on the column. The flow rate was set up to 0.2 mL/min and 

the separation was performed using following gradient: 70% to 50% ACN in 5 min, followed 

by 50% ACN for 10 min. The detection of separated glycans by ESI MS is described in 

the chapter 4.11. 

4.5. Protein enzymatic digestion 

Proteins were digested using two types of enzymes, trypsin or chymotrypsin, depending on 

the aim of analysis. 

4.5.1. Digestion in-gel 

Bands selected from 1D or 2D polyacrylamide gel were excised using scalpel or Bio-Rad 

ExQuest spot cutter. In-gel enzymatic digestion was performed according to Jensen et al. 

protocol.
88

 

First, the washing of dye and other contaminants from individual gel bands was performed. 

The small gel pieces were washed two times by 50% ACN for 15 minutes. Then, gel pieces 

were shrinked by 100% ACN and subsequently rehydrated by 0,1 M ammonium bicarbonate. 

After 5 minutes, the equal volume of ACN was added. The solution was removed after 

15 minutes and gel particles were dried down in SpeedVac.  

Afterwards, gel particles were rehydrated in the reducing reagent (10 mM DTT/0.1 M 

ammonium bicarbonate) and incubated for 45 minutes at 56 °C. Then, the liquid was removed 

and replaced by the same volume of cysteine-blocking reagent (55 mM IA in 0.1 M 

ammonium bicarbonate). Samples were incubated for 30 minutes at room temperature in the 

dark. Iodoacetamide solution was removed and gel particles were washed with 0.1 M 

ammonium bicarbonate, and after 5 minutes, the equal volume of ACN was added. All liquid 

was removed after 15 minutes of incubation. If a large amount of protein was analyzed and 

gel particles still contained some residual staining, an additional ammonium bicarbonate/ACN 

washing cycle was performed.  

Gel particles, completely dried down in SpeedVac, were rehydrated in the enzyme solution 

(25 μg of lyophilized enzyme dissolved in 2 mL of 50mM ammonium bicarbonate, 5 mM 

calcium chloride) at 4 °C. After 30 minutes, the remaining supernatant was removed and 

replaced with 20 μL of the same buffer, but without enzyme, to keep the gel pieces wet during 

enzymatic cleavage. The digestion was performed overnight at 37 °C. 

The supernatant was removed and collected together with subsequent extracts. Peptides 

were extracted three times by 50% ACN in 0.1% TFA for 15 minutes in the ultrasonic bath. 

Extracted peptides were dried down in SpeedVac. 
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4.5.2. Digestion in-solution 

Lyophilized proteins were re-dissolved in 50 mM ammonium bicarbonate (if necessary, 

8 M urea was added). The disulphide bonds were reduced by reducing reagent (10 mM DTT 

in 50 mM ammonium bicarbonate; 1 μL for 10 μL of digestion solution) by incubating the 

mixture for 30 min at 35 °C. Then, thiol groups were alkylated by iodoacetamide (55 mM IA 

in 50 mM ammonium bicarbonate; 1 μL for 10 μL of digestion solution) for 20 min at room 

temperature in the dark. The enzymatic degradation was carried out first with LysC enzyme at 

37 °C for 3 hours. Afterwards, digestion was continued overnight at 37°C after adding 

of trypsin. Both enzymes were added in the enzyme-to-protein ratio of 1:50 (w:w). Enzymatic 

digestion was stopped by addition of 5% TFA and samples were dried down in SpeedVac.  

4.6. Sample purification before mass spectrometry 

Prior to MALDI-TOF mass spectrometry analysis, the desalting, purification and 

concentration of peptides was performed using ZipTip C18 10 μL pipette tips (Millipore). 

This purification consists of four main steps: hydration of the C18 resin, sample loading, 

washing of contaminants and sample elution.  First, the resin was hydrated three times with 

50% ACN in 0.1% TFA (aspirated 10 μL of solution, discarded to waste, and repeated) and 

three times with 0.1% TFA. Then, sample dissolved in 10 μL of 0.1% TFA was slowly 

aspirated and expelled back into the tube for approximately ten times. Contaminants were 

washed by 0.1% TFA two times (aspirated 10 μL of solution, discarded to waste, and 

repeated). Peptides were eluted by 7 μL of 50% ACN in 0.1% TFA (five times aspirated and 

expelled into the same tube). 

For protein purification, protein extracts were dissolved in water and centrifuged 

at 10,000 rpm for 20 minutes in Nanosep centrifugal devices with 3kDa cut off (Pall Life 

Sciences Corporation, Michigan, USA). 

4.7. Isotopic labeling iTRAQ 

For the iTRAQ labeling, protein digestion protocol was slightly modified according to the 

iTRAQ 3-Assay Duplex Trial Kit protocol. For in-solution digestion, proteins were dissolved 

in 20 μL of 500 mM triethylammonium bicarbonate (TEAB, pH 8.5). For protein reduction, 

2 μL of 50 mM tris-(2-carboxyethyl) phosphine (TCEP) was added and samples were 

incubated for 1 hour at 60 °C. Then, 2 μL of 200 mM S-methyl methanethiosulfonate 

(MMTS) were added for protein alkylation and incubated for 10 minutes at room temperature. 

After enzyme digestion, the resulting peptides were incubated with iTRAQ (m/z 114, 117) 

reagents at room temperature for 90 min. After labelling, the contents of both paired samples 

(samples that should to be compared) were mixed together 1:1 ratio and dried completely.    
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4.8. Glycopeptides enrichment 

Glycopeptides enrichment on ConA lectin TopTips (Glygen Corporation, MD, USA) was 

performed according to the manufacturer manual. Peptides obtained after in-solution digestion 

(without any pre-purification step) were dissolved in 20 μL of loading buffer (100 mM 

sodium phosphate, pH 7.0, 0,2 M NaCl). ConA TopTip was washed using the loading buffer. 

Sample was loaded on the tip, slowly pushed through the ConA resin and expelled back in the 

eppendorf tube. This procedure was repeated five times. Than, the tip was washed four times 

by 20 μL of washing buffer (50 mM sodium phosphate, pH 7.0, 0,2 M NaCl). Bound 

glycopeptides were eluted five times by 20 μL of elution buffer (0,3 M glucose in the washing 

buffer).  

4.8.1. Purification of glycopeptides 

Glycopeptides obtained from ConA TopTip enrichment were purified using carbon 

Supel-Tips. Carbon tips were first activated using 50% ACN and then washed by water. 

Sample was slowly aspirated and expelled back approximately ten times (similarly to the 

ZipTip C18 purification). After washing by water, bound peptides were eluted using 7 μL 

of 30% ACN and directly spotted on MALDI target with DHB matrix. 

4.9. Deglycosylation of N-glycoproteins 

In-gel glycoprotein deglycosylation was performed according to the enzyme product 

information with reduced and alkylated protein sample in Coomassie stained polyacrylamide 

gels. Gel pieces cutting and washing as well as the reduction and alkylation of proteins were 

performed as in protein in-gel protease digestion (chapter 4.5.1). PNGase F solution was 

added to the dried gel pieces and after 30 minutes 20 μL of water was added to cover the gel 

pieces. The deglycosylation was performed overnight at 37 °C. Glycan extraction was 

performed three times with 200 μL of water in a sonic bath for 30 minutes and all extracts 

were combined and dried in SpeedVac. 

In-solution deglycosylation was performed according to Laštovičková et al.
81

 Proteins were 

reduced by 50 mM DTT in 20 mM ammonium bicarbonate at 56 °C for 45 min. The 

deglycosylation was performed overnight at 37 °C and obtained samples were dried down 

in SpeedVac. 

4.9.1. Purification of glycans 

Samples were dissolved in 50 μL 0.1% TFA and deglycosylated proteins or peptides were 

captured on C18 pipette tips (maximum volume 100 μL). Glycans remaining in the unbound 

fraction were directly purified on activated carbon Supel-Tip, washed by 0.1% TFA and 

eluted by 30 % ACN in 0.1% TFA. 
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4.10. MALDI-TOF/TOF MS analysis 

4.10.1. Sample spotting on the MALDI target 

Samples were mixed with matrix solution directly on the MALDI target in the ratio 1:1. 

About 450 nL of matrix solution was added on the top of 450 nL of sample. Different 

matrices were used for different samples. The proven matrices and their mixtures are listed in 

the Table 7. Moreover, some additional matrices were used for optimization of glycoproteins 

and glycans identification and will be mentioned in appropriate chapters.  

Table 7: Summary of used matrix solutions, their composition and application  

matrix  concentration solvent application 

CHCA α-cyano-4-hydroxycinnamic acid 10 mg/mL 50% ACN in 0.1% TFA peptides 

DHAP 2,6-dihydroxyacetophenone 50 mg/mL 50% ACN in 0.1% TFA proteins 

DHB 2,5-dihydoxybenzoic acid 25 mg/mL 40% ACN in 0.1% TFA glycopeptides, glycans 

FA ferulic acid 10 mg/mL 70% ACN in 0.1% TFA glycopeptides 

SA sinapinic acid 20 mg/mL 70% ACN in 0.1% TFA (glyco)proteins 

DHB/SA mixture 1:1 (v/v)   (glyco)proteins, glycans 

4.10.2. MALDI-TOF/TOF MS measurement 

MALDI-TOF MS experiments were performed on Applied Biosystems 4700 Proteomics 

Analyzer equipped with a 200 Hz Nd:YAG laser (operating at 355 nm), or on AB SCIEX 

TOF/TOF 5800 System equipped with a 1 kHz Nd:YAG laser (both from AB SCIEX, 

Framingham, MA, USA). Acquired mass spectra were processed using 4000 Series Explorer 

software (AB SCIEX, version 3.6, or later TOF/TOF Series Explorer version 4.1.0). Linear 

positive mode (for proteins analysis only) or positive reflectron mode were utilized. 

Accelerating voltages for MS and MS/MS measurements were set at 20 kV and 8 kV, 

respectively. MS/MS fragmentation was performed either with manually chosen signals, 

or with the highest signals in the spectrum computed by the software. MS/MS 

experiments were carried out by low-energy CID (collision energy set at 1 keV) where air was 

used as a collision gas. Mass spectra were obtained by accumulation of 2000 laser shots in 

MS mode and by 4000 laser shots in the case of MS/MS mode (automatically stopped after 

final spectrum reached high quality). The precursor ion removal was applied in MS/MS 

analyses.    



49 

 

4.10.3. Protein identification 

Required mass peak lists were created by Peaks to Mascot tool in 4000 (TOF/TOF) Series 

Explorer software. Acquired data were submitted to the Mascot database searching.
89

 Some 

analyses were evaluated using GPS explorer software (version 3.6) that allows faster 

identification of numerous samples. For protein identification, NCBInr database was used and 

the taxonomy restriction was set to ―other green plants‖. Other parameters were set 

as follows:  

 allowed missed cleavages: 1 – 3; 

 fixed modification: carbamidomethyl (C); 

 variable modification: oxidation of methionines; 

 maximum tolerance for peptide masses: 0.5 Da; 

 maximum tolerance for MS/MS fragment masses: from 0.2 to 0.8 Da; 

 peptide charge: +1, monoisotopic masses; 

 instrument – MALDI-TOF/TOF. 

In the case of iTRAQ labelled peptides analysis, additional settings were used:  

 fixed modifications: iTRAQ (N-term), iTRAQ (K); 

 variable modification: iTRAQ (Y). 

PMF strategy was usually not efficient for protein identification and provided only an initial 

view of the protein composition. Therefore, all identified proteins in this thesis were obtained 

after database searching of MS/MS data. Identified proteins from NCBInr database were 

searched in ID mapping tool of UniProt server
90

 to obtain the additional information from the 

UniProtKB database. The summary of all identified proteins including corresponding peptides 

and their sequence is listed in appendix (10.1 and 10.2.).  

4.11. ESI MS analysis 

Analysis of glycans by ESI mass spectrometry was performed directly after glycan 

separation on Prevail Carbohydrate ES column (chapter 4.4.4). ESI MS and MS/MS 

experiments were performed with an Esquire LC ion-trap mass spectrometer (Bruker 

Daltonics) equipped with an ESI source. Sample solutions were introduced into the ion source 

via a metal capillary held at high voltage (±3.5 kV). The other instrument conditions were 

as follows: drying gas temperature of 350 °C; drying gas flow of 9 L/min; nebulizer pressure 

of 40 psi. Nitrogen was used as both nebulizing gas and drying gas. The nozzle-skimmer 

potential and octopole potential were modified and optimized before each experiment. Ions 

were scanned in the range of m/z 150 – 2200 at a scan speed of 13,000 Da/s, and 8 scans were 

averaged for each spectrum. The maximum number of ions allowed in the ion-trap was set at 

20,000 with a maximum acquisition time of 50 ms. For MS/MS experiments the precursor ion 

isolation width was set to 5 Da, and the fragmentation amplitudes were varied between 

0.9 and 1.55 V to reduce the intensity of the precursor ion to 10% of its initial intensity. 

The fragmentation time was 40 ms, the low-mass cut-off was set at default 1/3 of 

the precursor m/z value.  
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5. RESULTS AND DISCUSSION 

5.1. Barley water-soluble proteins and their changes during individual stages 

of the malting and brewing process 

The analysis of barley grain composition is important for the brewing industry, human and 

animal nutrition, plant breeding or cultivar identification. Protein composition of malt and 

intermediate products of brewing has a great technological importance, for example presence 

of some enzymes can influence the whole malting process. Therefore as the first aim of the 

doctoral thesis, the protein composition of barley grain and the changes during the malting 

and brewing process were investigated. 

In this chapter, the attention was focused on water-soluble proteins that could pass during 

malt boiling into the sweet wort. Some of them survive the proteolytic enzymes activity and 

other undesirable conditions upon the beer production and are present in the final product, 

where they can influence several important beer quality properties.  

Since investigated barley extracts represents a complex mixture of different water-soluble 

compounds as well as different kinds of proteins, it was necessary to separate this complex 

protein mixture before the protein MS identification. Various separation techniques were used 

(1D and 2D GE, C18 and SEC HPLC). Obtained results from individual protein identification 

and analysis of protein changes during malting and brewing are described in this chapter. 

Moreover, the changes of low-molecular weight barley proteins were studied using the linear 

mode of MALDI-TOF MS. 

5.1.1. Analysis of barley grain and malt proteins by 1D gel electrophoresis 

Water-extracted proteins from barley grain and malt were separated on Tris-HCl linear 

gradient polyacrylamide gel 4 – 20 % (Bio-Rad), and subsequently, individual protein bands 

were in-gel digested with trypsin and analyzed by MALDI-TOF/TOF mass spectrometry. The 

obtained gel with marked bands used for MS identification is shown in Figure 9 and proteins 

identified in individual bands are shown in the Table 8.  

Barley grain is germinating during the first and essential phase of the beer production, 

i.e. malting. Changes in protein profile between barley grain and malt indicated the increase 

of the protein content and formation of new proteins. Some enzymes, for example α-amylase, 

β-D-xylosidase, 26 kDa endochitinase 1 or chitinase, were identified in the barley malt sample 

and were not detected in the grain sample. Therefore, either very small not detectable amount 

is present in the barley grain, or these proteins do not occur in non-germinated seed and are 

starting to create during malting. Focused on amylolytic enzymes, β-amylase was detected in 

both barley grain and malt, whereas α-amylase was identified only in the malt sample, 

because this enzyme is forming during the malting process.
31

 Moreover, more intensive band 

of malt β-amylase in comparison to grain indicate increasing amount of this protein after grain 

germination. 
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Figure 9: SDS-PAGE separation of barley grain and malt proteins. Protein bands above the 

marked lines were analyzed.
91

 

Table 8: Summary of proteins identified by MALDI-TOF/TOF MS in barley grain and malt 

after SDS-PAGE and in-gel tryptic digestion.
91

 

* proteins identified after database update  

spot 

No. 
grain malt 

NCBInr 

entry 

UniProtKB 

entry 

1 predicted protein * gi|326497219  F2E4C2 

2 
 

beta-D-xylosidase gi|18025342 Q8W011 

3 

beta-glucosidase gi|804656  Q40025 

beta-glucosidase [Sofia] gi|544867  not mapped 

beta-glucosidase gi|804656  Q40025 

4 

beta-amylase gi|10953877 Q9FUK6 

beta-amylase gi|11322499  Q9FSI3 

endosperm-specific beta-amylase 1 gi|29134855 Q84T20 

predicted protein * 
 

gi|326493636 F2CR08 

predicted protein * 
 

gi|326490934  F2D4W3 

5 

 

chain A, Amy2BASI PROTEIN-protein 

complex 
gi|4699831 P04063 

 
alpha-amylase type B isozyme gi|2851583  P04063 

 
alpha-amylase gi|229610885  C3W8N0 

 
alpha-amylase gi|166985 Q03651 

 
alpha-amylase gi|229610883 C3W8M9 

 
alpha-amylase 1 gi|166979  Q40016 

6 

protein z-type serpin gi|1310677 P06293 

protein Z (180 AA) gi|19079 P06293 

glyceraldehyde-3-phosphate dehydrogenase 1, cytosolic gi|120680 P26517 

glyceraldehyde-3-phosphate dehydrogenase 2, cytosolic * gi|120668 P08477 

fructose-bisphosphate aldolase gi|226316443 C1J960 
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spot 

No. 
grain malt 

NCBInr 

entry 

UniProtKB 

entry 

7 

peroxidase BP 1 gi|167081 Q40069 

chain A, crystal structure of barley grain peroxidase 1 gi|157830301 Q40069 

aldose reductase gi|113595 P23901 

 
malate dehydrogenase * gi|326490940 F2D4W6 

 
predicted protein * gi|326493416 F2CQP8 

8 

glucose and ribitol dehydrogenase homolog gi|7431022 F2CSK4 

 
1,3-beta-glucan endohydrolase GII gi|809429  P15737 

 
26 kDa endochitinase 1 gi|2506281 P11955 

 
predicted protein gi|326522492 F2EK36 

9 

26 kDa endochitinase 2 gi|116316 P23951 

chain A, the refined crystal structure of an endochitinase gi|157834680 P23951 

triosephosphate isomerase, cytosolic gi|2507469 P34937 

10 

basic pathogenesis-related protein PR5 gi|2344818  O23997 

barperm1 gi|2454602  O22462 

thaumatin-like protein TLP6 gi|14164979  Q946Z0 

thaumatin-like protein TLP7 gi|14164981 Q946Y9 

 
thaumatin-like protein TLP8 gi|14164983 Q946Y8 

 
chitinase gi|563489  Q43765 

 
chitinase II gi|9501334   Q9LEH7 

 
chitinase gi|215512228 D2CVR3 

11 

bifunctional alpha-amylase/subtilisin gi|18916 F2E8J4 

alpha-amylase/subtilisin inhibitor gi|123974  not mapped 

amylase subtilisin inhibitor alpha gi|225172  not mapped 

chain C, Amy2BASI PROTEIN-protein complex from barley seed gi|4699833  P07596 

12 

alpha-amylase/trypsin inhibitor CMd gi|585291  P11643 

CMd preprotein gi|758343 P11643 

CMd3 protein gi|2264392  O24000 

CMd subunit of tetrameric alpha-amylase inhibitor gi|2266660 not mapped 

alpha-amylase/trypsin inhibitor CMa gi|585289 P28041 

trypsin inhibitor CMe precursor gi|1405736 P01086 

BTI-CMe1 gi|2707922 P01086 

BTI-CMe3.1 protein gi|2707924 P01086 

trypsin inhibitor CMe gi|85682780  P01086 

BTI-CMe2.1 gi|6634471 P01086 

alpha-amylase inhibitor BMAI-1 gi|2506771 P16968 

 
pathogenesis-related protein PRB1-2 gi|548588 P35792 

 
pathogenesis-related protein PRB1-3 gi|548589   P35792 

 
pathogenesis-related protein 1 gi|548592  Q05968 

 
PR-1a pathogenesis related protein (Hv-1a) gi|401831  Q43489 

13 alpha-amylase/trypsin inhibitor CMb gi|585290 P32936 

14 

trypsin inhibitor CMc gi|161784337 P34951 

barwin gi|114832 P28814 

chain A, three-dimensional structure in solution of barwin gi|159162134  P28814 

15 
alpha-amylase inhibitor BDAI-1 gi|123970 P13691 

trypsin/amylase inhibitor pUP38 gi|225103  not mapped 

16 

LTP 1 gi|19039  P07597 

chain A, non-specific lipid transfer protein 1 gi|47168353 P07597 

non-specific lipid-transfer protein 1 gi|128376 P07597 

lipid transfer protein complexed with palmitate gi|157830246  P07597 

non-specific lipid-transfer protein * gi|326533572  F2ED95 

predicted protein * 
 

gi|326491097 F2EE76 

 

In approximately 70 kDa area of grain and malt samples (spot No. 1), protein belonging to 

the heat shock protein 70 family was identified. This protein was identified as heat shock 

70 kDa protein from maize or alternatives from rice, Arabidopsis thaliana and other plants 

during the experiment in 2011 (published in the journal ―Kvasný průmysl‖)
91

, but barley 

protein was not listed in used databases yet. In January 2013, obtained data were re-subjected 

to the updated NCBInr database search and the protein was identified as barley predicted 

protein belonging to the heat shock protein 70 family. Mass spectrum with marked peptides 
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corresponding to this protein is shown in Figure 10 and all peptides identified by MS/MS 

fragmentation are described by its sequence as well. Sequences of both maize and barley 

proteins were compared and align using ExPASy alignment tool SIM
92

 and lalnview 3.0
93

 

graphical viewer. These protein sequences have 88% identity. Obtained sequence and 

graphical alignment is shown in Figure 11. The signal of m/z 1675.7 was identified as peptide 

A225-R240 from maize heat shock protein. However, the corresponding signal of m/z 1691.7 

identified as peptide S230-R246 from barley predicted protein showed higher intensity. 

In addition, one peptide specific for barley protein was identified (m/z 1870.0, M336-R352).    

 

Figure 10: MALDI-TOF MS spectrum of sample No.1 corresponding to predicted protein 

(UniProtKB entry F2E4C2) belonging to the heat shock 70 kDa family. Identified peptides 

after PMF and MS/MS analysis are labelled in the spectrum.  

Subsequently, data of all grain and malt samples were re-searched in the updated NCBInr 

database. This search led to identification of some proteins newly listed in the database 

(proteins labelled with a star (*) in the Table 8). 

Considering these findings, several barley proteins were discovered and classified in the 

database during last two years. The majority of newly discovered proteins are still named 

―predicted proteins‖, and moreover, the function of some of them is still unknown. Therefore, 

proteomics of barley is still a current issue. 

5.1.2. Analysis of barley grain proteins by 2D gel electrophoresis 

To achieve the identification of higher number of barley grain proteins, the separation by 

2D gel electrophoresis was performed. Proteins purified by dialysis were separated in the first 

dimension on the IPG strip pI 3 – 10, and in the second dimension on the TGX gel 4 – 20%. 

Obtained 2D gel is shown in figure 12. Several spots are evident in the gel, and especially 

low-molecular weight protein area is dominant in the whole pI range. Individual spots were 

cut-off and in-gel digested with trypsin. After ZipTip C18 purification, proteins were 

analyzed by MALDI-TOF/TOF MS and identified using GPS Explorer software and NCBInr 

database.  
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Figure 11: a) sequence alignment of maize heat shock 70kDa protein (UniProtKB entry 

P11143) and barley predicted protein (UniProtKB entry F2E4C2); identified peptides are 

highlighted in red; b) graphical alignment of maize and barley protein. 

Proteins identified in individual spots are shown in the Table 9. In comparison 

to SDS-PAGE, the great advantage of 2D GE lies in the possibility to determine 

the isoelectric points of barley proteins. The theoretical pI of each identified protein were 

calculated using Expasy Compute pI/Mw tool
94

, and are shown in the Table 9 as well. 

The theoretical pIs approximately correspond with the IEF separation for majority of 

identified proteins; however, there are some exceptions. For example, glyceraldehyde-

3-phosphate dehydrogenase (spot No. 10), α-amylase inhibitor/endochitinase (spot No. 19) 

and subtilisin-chymotrypsin inhibitor CI-1A (spot No. 29) were identified in more basic area 

than correspond to their theoretical pIs. Therefore, other isoforms of the same protein or some 

modified proteins may be present in these spots. Moreover, these reasons may also cause the 

detection of some proteins in multiple spots.  
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Figure 12: 2D gel of barley grain proteins. Proteins were separated in the first dimension on 

the IPG strip pI 3 – 10, and in the second dimension on the TGX gel 4 – 20%, and 

subsequently stained using SYPRO ruby stain. Marked spots indicate proteins with the most 

convincing identification (with the highest protein score).  

Table 9: Summary of barley grain proteins identified after 2D gel electrophoresis. The 

theoretical pIs of each identified protein were calculated using Expasy Compute pI/Mw tool.
94

 

spot 

No. 
protein 

NCBInr 

entry 

UniProtKB 

entry 

mass 

(kDa) 

theoretical 

pI 

1 

tissue-ubiquitous beta-amylase 2 gi|61006818 Q4VM11 57.1 5.34 

low-molecular-weight glutenin subunit group 3 type II  

[Triticum aestivum] 

gi|17425184 Q8W3W6 26.7 8.21 

2 chain A  Sevenfold Mutant Of Barley Beta-Amylase gi|6729696 P16098 59.6 5.58  

3 

endosperm-specific beta-amylase 1 gi|29134857 Q84T19 59.6 5.58  

beta-amylase 1 gi|38349539 Q6SNP7 57.6 5.65  

beta-amylase gi|10953875 Q9FUK7 59.4 5.66  

4 cytosolic glutathione reductase gi|157362219 A8CCK8 53.1 6.07  

5 beta-glucosidase gi|804656 Q40025 57.4 7.18  

6 ent-kaurene synthase-like protein 2 gi|49065964 Q673F8 23.9 5.07  

7 BTI-CMe2.1 gi|6634471 P01086 16.1 7.50  

8 Rar1 gi|6581046 Q9SE34 25.4 7.88  

9 glyceraldehyde-3-phosphate dehydrogenase  cytosolic gi|120680 P26517 36.5 6.67  

10 glyceraldehyde-3-phosphate dehydrogenase gi|126467754 A3RHT3 25.0 5.75  

11 predicted protein gi|326497617 F2EEX6 36.0 6.74  

12 chitinase gi|563489 Q43765 26.6 6.09  

13 chain C  Amy2BASI PROTEIN-Protein Complex gi|4699833 P07596 22.2 7.77  

14 chain C  Amy2BASI PROTEIN-Protein Complex gi|4699833 P07596 22.2 7.77  

15 chain C  Amy2BASI PROTEIN-Protein Complex gi|4699833 P07596 22.2 7.77  

16 basic pathogenesis-related protein PR5 gi|2344818 O23997 25.2 6.53  

17 

thaumatin-like protein TLP7 gi|14164981 Q946Y9 23.6 7.36  

thaumatin-like protein TLP8 gi|14164983 Q946Y8 24.3 7.83  

chain A  The Refined Crystal Structure Of An Endochitinase gi|157834680 P23951 28.2 8.83  

26 kDa endochitinase 2 gi|116316 P23951 28.5 8.83  

18 thaumatin-like protein TLP8 gi|14164983 Q946Y8 24.3 7.83  
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spot 

No. 
protein 

NCBInr 

entry 

UniProtKB 

entry 

mass 

(kDa) 

theoretical 

pI 

19 
alpha-amylase inhibitor/endochitinase gi|266324 P15326 14.3 6.07  

26 kDa endochitinase 2 gi|116316 P23951 28.5 8.83  

20 
alpha-amylase inhibitor/endochitinase gi|266324 P15326 14.3 6.07  

26 kDa endochitinase 2 gi|116316 P23951 28.5 8.83  

21 
subtilisin-chymotrypsin inhibitor CI-1A gi|124125 P16062 8.9 5.24  

subtilisin-chymotrypsin inhibitor CI-1B gi|124127 P16063 9.0 5.33  

22 
subtilisin-chymotrypsin inhibitor CI-1A gi|124125 P16062 8.9 5.24  

subtilisin-chymotrypsin inhibitor CI-1B gi|124127 P16063 9.0 5.33  

23 trypsin/amylase inhibitor pUP13 gi|225102 not mapped 15.3 5.35  

24 alpha-amylase inhibitor BDAI-1 gi|123970 P13691 16.4 5.36  

25 
subtilisin-chymotrypsin inhibitor CI-1A gi|124125 P16062 8.9 5.24  

subtilisin-chymotrypsin inhibitor CI-1B gi|124127 P16063 9.0 5.33  

26 alpha-amylase inhibitor BMAI-1 gi|2506771 P16968 15.8 5.58  

27 
alpha-amylase inhibitor BDAI-1 gi|123970 P13691 16.4 5.36  

alpha-amylase inhibitor BMAI-1 gi|2506771 P16968 15.8 5.58  

28 alpha-amylase/trypsin inhibitor CMa gi|585289 P28041 15.5 5.86  

29 subtilisin-chymotrypsin inhibitor CI-1A gi|124125 P16062 8.9 5.24  

30 predicted protein gi|326520285 F2EJ79 15.3 6.73  

31 
chymotrypsin inhibitor-2 gi|158530106 A8V4D2 9.4 6.58  

subtilisin-chymotrypsin inhibitor-2A gi|124122 P01053 9.4 6.58  

32 barwin gi|114832 P28814 13.7 7.76  

33 
barwin gi|114832 P28814 13.7 7.76  

pathogenesis-related protein 4 gi|1808651 P93180 15.7 8.50  

34 barwin gi|114832 P28814 13.7 7.76  

 

In the sample No. 1, low-molecular-weight glutenin subunit protein from wheat (Triticum 

aestivum) was identified with high protein score and three non-duplicate peptide matches after 

MS/MS measurement. Nevertheless, no corresponding barley protein was identified after 

BLAST searching
95

, indicating that barley protein was not present in the NCBInr database 

yet. In addition, corresponding barley protein should have higher mass and lower pI than 

identified wheat protein according to the IEF separation. 

Two-dimensional electrophoresis allowed more effective separation of individual proteins 

present in barley grain. As a result, some additional proteins were identified in comparison 

to one-dimensional gel electrophoresis (chapter 5.1.1, Table 8). For example, several 

subtilisin-chymotrypsin inhibitors were identified after 2D GE and were not detected after 

SDS-PAGE only. However, the protein identification after 2D GE was more difficult because 

of the lower protein concentration in individual samples. Also, this method was time 

consuming and IEF was sensitive on salt and other contaminants in the sample. Although 

barley grain proteins are less distributed after SDS-PAGE separation only, the MALDI-TOF 

MS analysis allowed the identification of multiple proteins in one spot. Therefore, 1D gel 

electrophoresis was used for further analyses as a more suitable method for rapid mapping 

of proteins occurring in the barley sample. 

5.1.3. Study of protein changes during the malting process by 1D gel 

electrophoresis 

To obtain more detailed view on protein changes during malting, samples of individual 

stages of malting process (grain, 1
st
 – 5

th
 day of the malting process, green malt and malt) 

were studied. Water-soluble proteins of individual barley samples were separated on 15% 

polyacrylamide gel. The analysis of proteins changes on the obtained gel (Figure 13) 

confirmed the previous findings, namely that the amount of some proteins is increasing and 
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some proteins are created in the germinated grain during the malting process. The protein 

lines with the most significant changes are labelled in the Figure 13. Individual proteins in 

grain and malt sample were identified in the chapter 5.1.1 (see Table 8). While content of 

β-amylase (line No. 1) seemed to increase linearly during all days of the malting process, the 

amount of proteins in line No. 3 (protein Z, glyceraldehyde-3-phosphate dehydrogenases, 

fructose-bisphosphate aldolase) probably began to increase from the fourth day of malting. 

The first signs of α-amylase (line No. 2) appeared in the sample from the second day of 

malting. Moreover, the amount of proteins in line No. 4 (26 kDa endochitinase 2, 

triosephosphate isomerase) seemed to be increasing, whereas the amount 

of α-amylase/subtilisin inhibitors (line No. 5) seemed to decrease during malting. When 

focussing on proteins present in the line No. 6, two strong bands were apparent in the grain 

sample, while only one blurry band was visible in the malt sample. In the grain sample, 

α-amylase/trypsin CMd inhibitors were identified in the upper band and the other identified 

proteins were present in the lower band (see Table 8). The fusion and blur of these two bands 

could be caused by formation of some new proteins (pathogenesis related proteins were 

detected in malt sample only), or by protein modifications created during malting. 

 

Figure 13: SDS-PAGE separation of barley proteins from individual steps of the malting 

process. The protein lines with the most significant changes are labelled. 
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5.1.4. Study of protein changes during the brewing process by 1D gel 

electrophoresis 

Water-extracted proteins from barley grain, malt, sweet wort, wort and green beer were 

separated on linear gradient polyacrylamide gel 4 – 20 %, and subsequently, individual 

protein bands were in-gel digested with trypsin and analyzed by MALDI-TOF/TOF mass 

spectrometry. The obtained SDS-PAGE gel with marked bands for MS identification is shown 

in Figure 14 and survey of proteins identified after tryptic digestion in individual stages of the 

malting and brewing process is shown in the Table 10.  

 

Figure 14: SDS-PAGE separation of barley proteins from individual steps of the malting and 

brewing process. Protein bands above the marked lines were analyzed.
91

 

At the beginning of the brewing process, malt is boiled in water leading to sweet wort 

production. From comparison of malt and sweet wort protein profile (Figure 14) it is evident 

that protein amount was significantly decreasing. Many proteins were decomposed due to the 

high temperature and enzymatic activity of some proteases. In the sweet wort sample, 

α-amylase, β-D-xylosidase, barperm and thaumatin-like proteins were still identified. 

Considering that these proteins were not determined in the wort and green beer samples, they 

were apparently precipitated during brewing. In contrast to α-amylase, more temperature 

sensitive β-amylase
31

 was not detectable in the sweet wort sample and was denatured during 

mashing.  
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Table 10: Summary of proteins identified in individual brewing stages. The presence of 

proteins in individual samples is highlighted by blue colour.
 91

 

spot 

No. 
grain malt 

sweet 

wort 
wort green beer 

1. predicted protein (heat  shock protein 70 family) 
  

2. 
 

beta-D-xylosidase 
 

3. beta-glucosidase 
  

4. beta-amylase 
  

5. 
  

enolase 1 [Saccharomyces cer.] 

6. 
 

chain A, Amy2BASI PROTEIN-Protein Complex 

alpha-amylase  

7. 

protein z-type serpin 

glyceraldehyde-3-phosphate dehydrogenase, cytosolic 

fructose-bisphosphate aldolase 

 

 

 

 

 

8. 
aldose reductase 

peroxidase BP 1   

9. 
glucose and ribitol dehydrogenase homolog 

  

 
26 kDa endochitinase 1 

  

10. 
26 kDa endochitinase 2 

triosephosphate isomerase, cytosolic   

11. 

barperm1 

thaumatin-like protein TLP6; TLP7 

basic pathogenesis-related protein PR5 
 

 

thaumatin-like protein TLP8 

chitinase  

12. 

alpha-amylase/subtilisin inhibitor 

bifunctional alpha-amylase/subtilisin inhibitor 

chain C, Amy2BASI PROTEIN-Protein Complex 
 

13. 

alpha-amylase/trypsin inhibitor CMd 

CMd3 protein 

alpha-amylase inhibitor BMAI-1 

trypsin inhibitor CMe 

BTI-CMe2.1 

alpha-amylase/trypsin inhibitor CMa 

 
pathogenesis-related proteins 

 
14. alpha-amylase/trypsin inhibitor CMb 

15. 
barwin 

trypsin inhibitor CMc 

16. 
alpha-amylase inhibitor BDAI-1 

trypsin/amylase inhibitor pUP38 

17. 
non-specific lipid-transfer protein 1 

lipid transfer protein complexed with palmitate 

 

In sweet wort, wort and green beer samples, two general protein areas are evident 

(Figure 14). In the first intensive area about the molecular weight of 40 kDa, protein Z 

(belonging to the group of PR-6 proteins) was identified. The second area occurs in range 

from 20 to 6 kDa, where several of low-molecular weight proteins were identified, namely 

protease/α-amylase inhibitors (PR-6) and ns-LTP (PR-14). While protein Z content seemed to 

be stable during the whole brewing process, the content of low-molecular weight proteins was 

decreasing, according to the less intense spots on the gel and less intense peptides intensity in 

MS spectra as well. Obtained results confirmed that identified barley proteins from PR-6 and 

PR-14 groups are temperature stable and protease resistant, they can get up to the final 

product where they could affect the quality properties. In the green beer sample, one protein 

originating from Saccharomyces cerevisiae yeast was identified as well. 

These results were published in 2011 in the journal Kvasný průmysl.
91
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1D gel electrophoresis represents a suitable method for successful monitoring of changes in 

the protein profile during individual steps of the malting and brewing process. 

The representation of individual proteins in the sample may be determined visually from the 

intensity of corresponding protein spots. Nevertheless, the spot intensity may be influenced 

also by other factors (for example protein modifications). The exact quantification 

of individual proteins and/or their changes requires some additional equipment or method, for 

example the iTRAQ labelling for relative quantification described in the chapter 5.3. 

5.1.5. Study of protein changes during the malting and brewing process by 

HPLC C18 separation  

Water-extracted proteins from barley grain, malt, sweet wort, wort and green beer were 

separated on C18 reversed phase HPLC column. The changes in protein profile during the 

malting and brewing process are shown in chromatograms (Figure 15). Marked grain and malt 

fractions were collected, in-solution digested with trypsin, and analyzed 

by MALDI-TOF/TOF MS after peptide purification. Identified proteins are summarized in the 

Table 11. The MS identification of proteins in the first two HPLC fractions after tryptic digest 

resulted in very poor spectra and no proteins were identified. Therefore, intact proteins from 

these fractions were analyzed by MALDI-TOF MS in linear mode. In the first and second 

fraction, ns-LTP2 and ns-LTP1b were detected, respectively. However, this identification 

is not as accurate as the identification of proteins after MS/MS fragmentation of tryptic 

peptides. Considering the large area of these two peaks, also some additional proteins 

(probably low-molecular weight ones) may be present in them. 

Table 11: Proteins identified in barley grain and malt after reversed phase C18 HPLC 

separation, tryptic in-solution digestion and MALDI-TOF/TOF MS analysis.
91

 

peak 

No. 
grain malt 

NCBInr  

entry 

UniProtKB 

entry 

3 

alpha-amylase/trypsin inhibitor CMb gi|585290 P32936 

trypsin/amylase inhibitor pUP38 gi|225103 not mapped 

alpha-amylase/trypsin inhibitor CMd gi|585291 P11643 

CMd3 protein gi|2264392 O24000 

alpha-amylase inhibitor BMAI-1 gi|2506771 P16968 

4 
bifunctional alpha-amylase/subtilisin inhibitor gi|18916 F2E8J4 

chain C, Amy2BASI PROTEIN-protein complex from barley seed gi|4699833 P07596 

5 putative avenin-like a precursor 
 

gi|326501830 F2EGD5 

6 
subtilisin-chymotrypsin inhibitor-2A 

 
gi|124122 P01053 

chymotrypsin inhibitor-2 
 

gi|158530106 A8V4D2 

7 
26 kDa endochitinase 2 gi|116316 P23951 

chain A, the refined crystal structure of an endochitinase gi|157834680 P23951 

8 
aldose reductase gi|113595 P23901 

chain A, crystal structure of barley grain peroxidase 1 gi|157830301 Q40069 

9 
fructose-bisphosphate aldolase gi|226316443 C1J960 

 
alpha-amylase type B isozyme gi|2851583 P04063 

10 beta-amylase gi|10953877 Q9FUK6 

11 beta-glucosidase gi|804656 Q40025 

12 protein z-type serpin gi|1310677 P06293 
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Figure 15: Chromatograms from HPLC C18 separation of barley water-soluble proteins, 

showing the protein changes during the malting and brewing process: a) grain; b) malt; 

c) sweet wort; d) wort; e) green beer. Marked fractions from grain and malt were collected 

and analyzed.
91

 

 

Protein profile changes during the malting and brewing process observed on HPLC C18 

chromatograms are similar to the protein profile changes on the SDS-PAGE gel (Figure 14). 

In the chromatogram of barley grain sample, large amount of relatively narrow peaks is 

evident, while in malt sample, the higher amount of proteins resulted in formation of broader 

peaks. In the grain and malt samples, identical proteins were identified in corresponding 

peaks, only chymotrypsin inhibitors and putative avenin-like a precursor were not detectable 

in malt (peaks No. 5 and 6), and α-amylase was not identified in grain sample (peak No. 9) 

because this enzyme is formed during malting. The biggest changes in the grain and malt 

chromatographic protein profiles were observed in the peaks No. 10 and 11, corresponding to 

β-glucosidase and β-amylase, respectively. In the malt sample, these two peaks were joined 

in one broader peak. The cause is probably the increasing amount of β-amylase during 

malting, which is in agreement with our previous results (chapter 5.1.1).   
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During mashing and mainly brewing, many proteins are denatured. In the HPLC C18 

chromatogram of sweet wort sample, disappearance of some peaks was obvious. Especially 

the large peak No. 11 in malt sample corresponding to β-glucosidase and β-amylase was 

disappeared. However, in contrast to wort sample, some proteins were still evident in sweet 

wort and were proteolytically digested or precipitated during the wort boiling. Wort and green 

beer sample showed almost identical chromatogram, and according to identification after 

SDS-PAGE, both of these samples contain ns-LTPs, protein Z and other protease/α-amylase 

inhibitors.  

One separation step of the reversed phase C18 HPLC separation of barley proteins took 

four minutes, and therefore, this method represents a suitable method for rapid barley protein 

separation. The separation of barley grain was the most efficient as it led to 12 relatively sharp 

peaks. Proteins were separated according to their hydrophobicity on the reversed phase 

column; however, the influence of separation according to the molecular mass was also 

obvious, as was described in the literature.
3
 Obtained results were published in 2011 in the 

journal Kvasný průmysl.
91

 

5.1.6. Study of protein changes during the malting process by HPLC SEC 

separation  

Barley grain and malt aqueous extracts were separated on size exclusion BioSEC-3 column. 

Marked fractions (Figure 16) were collected, concentrated in SpeedVac and lyophilized. 

Then, individual fractions were in-solution digested with trypsin and analyzed 

by MALDI-TOF/TOF MS after ZipTip C18 purification. Identified proteins in individual 

grain and malt fractions are shown in the Table 12.  

 

Figure 16: HPLC SEC separation of water-soluble proteins of barley a) grain; and b) malt. 

Marked fractions were collected and analyzed. 

Several proteins were identified in barley grain and malt, including some proteins yet 

unidentified in our previous studies (e.g. some predicted proteins, proteins in peak No. 3, 

or dehydrin in peak No. 7). Barperm1, thaumatin-like proteins and pathogenesis-related 

protein PR5 were identified in grain sample only; however, after SDS-PAGE they were 

identified in malt as well. As a possible explanation, the presence of probably huge amount 

of α-amylase in this malt fraction could make worse the identification of these proteins.  
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Table 12: Summary of identified proteins in barley grain and malt after SEC HPLC 

separation, tryptic in-solution digestion and MALDI-TOF/TOF MS analysis. 

peak 

No. 
grain malt 

NCBInr 

entry 

UniProtKB 

entry 

1. predicted protein  gi|326520537 F2EJK5 

2. 

beta-amylase gi|10953877 Q9FUK6 

beta-glucosidase gi|804656 Q40025 

protein z-type serpin gi|1310677 P06293 

3. 

late embryogenesis abundant protein B19.1A  gi|547817 Q05190 

grain softness protein  gi|54661662 Q5ITH7 

predicted protein  gi|326502266 F2DJC5 

glucose and ribitol dehydrogenase homolog  gi|7431022 not mapped 

predicted protein  gi|326493416 F2CQP8 

aldose reductase  gi|113595 P23901 

 
predicted protein gi|326506996 F2DKF4 

4. 

cold-regulated protein gi|10799810 Q9FSI8 

 
alpha-amylase type B isozyme gi|2851583  P04063 

predicted protein  gi|326520285 F2EJ79 

barperm1  gi|2454602 O22462 

thaumatin-like protein TLP7  gi|14164981 Q946Y9 

thaumatin-like protein TLP6  gi|14164979 Q946Z0 

basic pathogenesis-related protein PR5  gi|2344818 O23997 

5. 
alpha-amylase inhibitor BDAI-1 gi|123970 P13691 

trypsin/amylase inhibitor pUP13 gi|225102 not mapped 

6. 
barwin gi|114832 P28814 

thaumatin-like protein TLP8 gi|14164983 Q946Y8 

7. 

 
dehydrin gi|6017948 Q9ZTR8 

Amy2BASI PROTEIN-Protein Complex From Barley Seed gi|4699833 P07596 

thioredoxin H2 gi|119390312 P07596 

alpha-amylase/subtilisin inhibitor gi|123974 P07596 

alpha-amylase/trypsin inhibitor CMa gi|585289 P28041 

alpha-amylase/trypsin inhibitor CMb gi|585290 P32936 

trypsin inhibitor CMe gi|85682780 P01086 

putative avenin-like a precursor gi|326501830 F2EGD5 

 

The biggest difference between grain and malt profiles was observed in peaks No. 3, where 

three high abundant proteins were identified: β-amylase, β-glucosidase and protein Z. This 

peak was significantly increasing during malting. The more detailed view on the changes 

of these proteins obtained by iTRAQ relative quantification method is shown in chapter 5.3.1. 

In addition, an significant increase was observed also in grain and malt peaks No. 7, where 

several α-amylase/trypsin inhibitors were identified, indicating the increasing amount of one 

or more of these proteins during malting.  

In comparison to separation on reversed phase C18 column (chapter 5.1.5), individual 

protein fractions were more separated from each other after C18 HPLC than after SEC HPLC. 

Moreover, C18 HPLC separation was faster, which is given mainly by different column 

dimensions. The advantage of SEC HPLC lies in the ability to approximately estimate 

the molecular weight of proteins. 
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5.1.7. Changes in low-molecular weight protein profile during malting and 

mashing 

For the more detailed characterization of changes of low-molecular weight barley proteins 

during malting and mashing, the linear mode of MALDI-TOF mass spectrometer was used. 

Aqueous extracts of grain, malt and sweet wort were used for investigation of low-molecular 

weight protein profile changes during malting and mashing. Individual samples were purified 

via Nanosep centrifugal devices for MS signal improvement due to desalting and removing 

of compounds with molecular weight lower than 3 kDa. Samples were spotted on MALDI 

target in ratio 1:1 with DHAP matrix solution.  

 

Figure 17: MALDI-TOF linear mode MS spectra of low-molecular weight proteins from 

a) grain; b) malt; c) sweet wort. The non-enzymatic glycation by one hexose unit is marked by 

a dot sign (●).
91

 

Acquired MALDI-TOF spectra labelled with names of corresponding proteins are shown 

in Figure 17. Following proteins belong among major proteins in the low-mass 3.2 – 20 kDa 

area: protein Z fragment (C-terminal 363 – 399 fragment
49

; 4.03 kDa), LTP1 (9.69 kDa), 

LTP2 (7.10 kDa) and LTP1b (LTP1 with bound 294 Da lipid-like molecule 9-hydroxy-10-

oxo-12(Z)-octadecenoic acid
57

; 9.98 kDa). LTP2 and LTP1b were detected in all three 
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samples. Fragment of protein Z was not detectable in the grain sample. However, it is formed 

during malting and resulted in the most intensive peak of the malt and sweet wort MS spectra. 

This proteolytic cleavage is probably caused by the interaction between protein Z and serine 

proteases and supports the creation of heat and protease stable molecule of protein Z 

that survives the brewing process and is present in beer.
49,50

 The sequence of protein Z with 

marking of fragment cleavage is shown in Figure 28 (chapter 0).  

While only lipid-modified form of LTP1 (known as LTP1b) was detected in grain and malt 

samples, LTP1 form was more intensive than LTP1b in the sweet wort sample. This indicates 

that the lipid-protein bond is probably breaking up during mashing. This conclusion is 

in agreement with findings obtained by Perrocheau et al.
51

, who have discovered that 

glycation induced by Maillard reaction was more heat stable than the ester linkage of the lipid 

like adduct of the barley LTP1.  

All discussed proteins are non-enzymatically glycated after the malting process. A hexose 

unit (very likely glucose) is bound to the protein, which leads to the increase of the molecular 

mass about 162 Da. From obtained spectra it is evident that MALDI-TOF MS operated in the 

linear mode provide a suitable method for study of glycation of low-molecular weight 

proteins. This protein modification will be further analyzed and discussed in detail in the 

chapter 5.5.  

Low-molecular weight barley proteins and the changes they have undergone during the 

malting and mashing can be successfully monitored using the MALDI mass spectrometer 

in the TOF linear mode. Obtained results were published in 2011 in the journal Kvasný 

průmysl.
91

 

5.2. Barley prolamins (hordeins) and their changes during malting 

Barley prolamins (hordeins) are alcohol-soluble storage proteins of barley grain and the 

main protein fraction of barley endosperm.
62

 Hordeins are present in the protein matrix that 

surrounds the starch granules within the cells of the endosperm. Degradation of the hordein in 

this matrix during malting is necessary to allow starch degrading enzymes access to the 

starch, which facilitates complete starch hydrolysis.
63

 The aim of this study was to investigate 

the effect of the malting on hordein composition.  

Hordeins were extracted by 60% ethanol and 2% DTT from samples of individual stages 

of the malting process: barley grain, 1
st
 to 5

th
 day of malting, green malt and malt. Obtained 

proteins were separated by SDS-PAGE on 12% polyacrylamide gel (Figure 18). Grain and 

malt proteins were in-gel digested with chymotrypsin and analyzed by MALDI-TOF/TOF 

MS. 

Table 13: Identified proteins from barley prolamin fraction.
96

 

spot No. protein NCBInr entry UniProtKB entry 

1. D hordein gi 1167498 Q40054 

2. 

3. 
C hordein 

gi 167016 Q40037 

gi 442524 Q41210 

4. C hordein gi 442524 Q41210 

5. B1 hordein gi 82548225 Q2XQF0 

6. B3 hordein gi 123459 P06471 

7.  hordein gi 123464 P17990 
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Figure 18: SDS-PAGE separation of barley prolamins (hordeins) from individual steps of the 

malting process. Protein bands above the marked lines were analyzed. 

Although trypsin is a preferred enzyme for protein identification, hordeins contain very 

small number of arginine and lysine, which cause the formation of peptides with inappropriate 

molecular mass for subsequent MS analysis. Therefore, chymotrypsin was used for enzymatic 

cleavage of hordeins and was found as a suitable enzyme for this type of analysis. 

The MALDI-TOF/TOF MS analysis and subsequent database searching resulted 

in identification of several barley hordeins (Table 13). In contrast to various proteins found in 

the fraction of water-soluble proteins, proteins in alcohol-soluble prolamin fraction can be 

divided in only four general groups: D hordeins, C hordeins, B hordeins and  hordeins. 

According the spot intensities on the gel, B and C hordeins are the major proteins, which is 

in good agreement with theory.
62

 

The SDS-PAGE separation of proteins from individual stages of the malting process 

provided the basic information about the protein changes during malting. The slight decrease 

of hordeins content during malting is evident from the weakening intensity of hordeins spots. 

The most rapid decrease was noticed in spot number 1 corresponding to D hordein. From the 

5
th

 day of malting, D hordein is almost undetectable after Coomassie gel staining. This finding 

was supported also by MS analysis of corresponding peptide digests. D hordein is almost 

completely degraded during the malting, which can improve malting because D hordein 

displayed the strongest negative correlation with malt quality according to Howard et al.
63

 

Protein spots from line No. 4 corresponding to C hordein were subsequently used for 

characterization of protein changes during malting using the iTRAQ relative quantification 

method (chapter 5.3.2).  

Obtained results were published in 2012 in the European Journal of Mass Spectrometry.
96
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5.3. Relative quantification of barley proteins using iTRAQ method 

The iTRAQ labelling method was used for the relative quantification of barley protein 

changes during malting. Used iTRAQ method was based on two reagents of the same mass 

(isobaric tags) that contained different reporter groups – m/z 114 and m/z 117. The analysis 

was based on labelling of protein proteolytic digests by these reagents. Then, paired samples 

were mixed and analyzed by MALDI-TOF MS. The mass of all labelled peptides was higher 

by 144.1 Da, but after MS/MS fragmentation of these peptides, the fragments of the reporter 

groups (m/z 114 corresponding to the first sample and m/z 117 corresponding to the second 

sample) were present in the MS/MS spectra. By the comparison of peak areas of these 

fragments, the relative quantification of samples labelled by corresponding reagent was 

performed. 

5.3.1. Relative quantification of selected barley albumins 

From the HPLC SEC separation of barley grain and malt water-soluble proteins 

(chapter 5.1.6), the significant area increase of peak number 2 was obvious (Figure 16). Since 

three proteins were identified in this fraction (namely β-amylase, β-glucosidase and protein 

Z), iTRAQ method was used to obtain detailed view on changes of these particular proteins 

after the malting process. 

β-Amylase belong between amylotic enzymes that are involved in hydrolysis 

of α1-4 glycosidic bounds in starch, glycogen and other polysaccharides, and therefore, they 

are responsible for the increasing amount of fermentable sugars in sweet wort.
31

 

β-Glucosidase is able to degrade fungal cell wall polysaccharides and therefore may provide a 

protection against microbial invasion of germinated barley grain.
97

 Protein Z is important for 

the quality of beer, especially improves the foaming properties.
8
 Accordingly, all these three 

proteins are important for high quality of malt and/or beer. 

Selected fraction of grain and malt was collected and proteins were in-solution digested 

with trypsin, and subsequently, the iTRAQ labelling was performed. The reagent of m/z 114 

was used for barley grain sample and the reagent of m/z 117 for malt sample. Then, aliquots 

of grain and malt sample were mixed together in the ratio 1:1 and dried down completely. 

Samples were purified using C18 ZipTips and analyzed by MALDI-TOF/TOF mass 

spectrometry.  

Obtained MS/MS data were subjected to database searching, and as a result, six peptides of 

β-amylase, four peptides of β-glucosidase and two peptides of protein Z were identified. 

Identified peptides were used to relative quantification analysis. The MS/MS fragmentation 

spectrum of each peptide was measured three times and the data evaluation of each spectrum 

provided a ratio of m/z 114 peak area towards m/z 117 peak area (or ratio of grain towards 

malt), and the three ratios of one peptide were averaged. Obtained results are presented 

graphically in Figure 19.  

The amount of all three proteins presented in investigated HPLC SEC fraction is increasing 

during the malting process. By averaging of obtained ratios of each protein, a total ratio 

of grain and malt protein content was obtained. If the malt protein content is expressed 

as 100 %, approximately 60 % of malt β-amylase is present in grain sample. Accordingly, 

approximately 80 % of malt β-glucosidase and 83 % of malt protein Z are present in grain. 

It follows that the content of β-amylase is increasing more rapidly in comparison 

to β-glucosidase and protein Z. 
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Figure 19: peak area ratios (grain towards malt) of iTRAQ modified peptides corresponding 

to: a) β-amylase; b) β-glucosidase; and c) protein Z. 

5.3.2. Relative quantification of C hordein 

The analysis of hordein profiles of barley grain, individual stages of the malting process 

and malt after SDS-PAGE (chapter 5.2) indicated that the content of C hordein is decreasing 

during the malting process (line number 4 in Figure 19). To obtain more detailed view on 

these changes, relative quantification using iTRAQ labelling method was performed. Bands of 

C hordein in line number 4 were excised, in-gel digested with chymotrypsin, and peptides 

obtained by extraction from the gel were subjected to the iTRAQ labelling process. Reagent 

of m/z 114 was used for samples of individual malting stages, and reagent of m/z 117 was 

used for grain sample only. After labelling, aliquots of grain sample were mixed with samples 

of individual malting stages in the ratio 1:1 and dried down completely. Prior to 

MALDI-TOF/TOF mass spectrometry, samples were purified using ZipTip C18 pipette tips.  

Three iTRAQ labelled peptides belonging to C hordein (Q41210) were identified after 

MS/MS fragmentation and database searching. The signals at m/z 2133, m/z 2247 and 

m/z 2300, iTRAQ modified with a mass increment of 144.1 Da, correspond to C hordein 

unmodified peptides of 1989 Da, 2103 Da and 2156 Da, respectively. For one sample, 

the fragmentation MS/MS spectrum of each modified peptide was measured three times.  

The representation of C hordein within malting is expressed by ratios of peak areas 
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at m/z 114/117 of individual modified peptides, where m/z 117 represent grain and m/z 114 

represent the following stages of the malting process. The average ratios corresponding 

to individual peptides were calculated for each sample and are presented graphically 

in Figure 20.  

 

Figure 20: Peak area ratios (individual malting stages towards grain) of iTRAQ modified 

peptides corresponding to C hordein.
96

 

Showed data confirmed that the amount of C hordein is significantly decreasing during the 

malting process. Moreover, when the three ratios of individual peptides were averaged, 

a detailed view on protein decrease was obtained. The amount of C hordein in malt 

represented 35 % of the initial amount in barley grain (Figure 21). 

This study was published in 2012 in the European Journal of Mass Spectrometry.
96

 

 

Figure 21: Relative representation of C hordein within individual stages of the malting 

process. The amount of C hordein is decreasing during malting up to 35 % of the initial 

quantity.
96
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Used iTRAQ technique represents a suitable method for relative quantification of protein 

changes during the malting process. It can be successfully used for HPLC separated and 

in-solution digested proteins (chapter 5.3.1), as well as for SDS-PAGE separated proteins 

after in-gel digestion (chapter 5.3.2). To compare these two approaches, iTRAQ 

quantification after SDS-PAGE seems to be more suitable and faster method for mapping of 

protein changes during the whole malting process by monitoring of the individual malting 

step.  

5.4. Comparison of selected barley varieties 

Distinction between individual barley varieties is crucial for malsters and beer producers, 

as well as for biochemical studies. Protein composition of barley grain affects the quality 

of malt and beer.
98

 For the production of authentic Czech beer, only eight barley varieties are 

allowed (Tolar, Malz, Bojos, Blaník, Advent, Aksamit, Calgary and Radegast) according 

to recommendation of the RIBM.
13 

Therefore, study of relationships between these approved 

varieties and other barley varieties is desirable. Barley variety discrimination is often 

performed by SDS-PAGE separation of alcohol-soluble proteins (hordeins), and 

by comparison of hordein profile of individual varieties. This method can be used in many 

laboratories because it does not require expensive equipments. Nevertheless, some European 

barley varieties remain undistinguishable, since they are closely related and have very similar 

protein pattern.
99

 Moreover, Šalplachta et al.
62

 published a variety discrimination method by 

MALDI-TOF analysis of intact hordeins. The main advantage of this approach is quite short 

time of analysis in contrast to conventional electrophoretic method. MS analysis of hordein 

extracts provides characteristic protein profile for each barley variety. However, this method 

requires expensive equipment. 

Therefore, a simple, rapid and robust method for varieties discrimination is still needed. 

For this purpose, several spring barley varieties were studied to find some differences in their 

protein composition using one simple method.  

5.4.1. Comparison of protein profiles of individual barley varieties using 

C18 HPLC   

For this study, grain and malt samples of six European barley varieties were compared: 

Jersey (hulled variety with good malting properties), Tolar, Blaník, Bojos, Malz (hulled 

varieties allowed for the production of beer with PGI Czech beer) and AF Lucius 

(non-malting hulles variety). Aqueous extracts of barley grain and malt of individual varieties 

were separated on C18 Poroshell 300SB HPLC column in the linear gradient of ACN in 0.1% 

TFA. Obtained chromatograms of barley grains and malts are shown in Figures 22 and 23, 

respectively. The differences between chromatograms of barley grain and malt are discussed 

in the chapter 5.1.5 and the identification of individual grain and malt protein is shown in 

theTable 11. 
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Figure 22: Chromatograms of HPLC C18 separation of individual barley grain varieties: 

a) Jersey; b) Tolar; c) Blaník; d) Bojos; e) Malz; f) AF Lucius. The areas of labelled peaks 

were used for the varieties comparison. 

 

Figure 23: Chromatograms of HPLC C18 separation of individual barley malt varieties: 

a) Jersey; b) Tolar; c) Blaník; d) Bojos; e) Malz; f) AF Lucius. The areas of labelled peaks 

were used for the varieties comparison. 

Significant differences between some varieties were evident from obtained chromatograms. 

However, the comparison of individual varieties using chromatograms only was difficult. 

Therefore, five major HPLC peaks were selected (peaks No. 1, 2, 4, 11 and 12) and used 

for varieties comparison. The proportional representation of these peak areas (obtained 

by integration using ChemStation software) related to peak No. 2 was performed for each 

variety and expressed graphically in Figure 24. 
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Figure 24: The proportional representation of five major peak areas related to peak No. 2. 

Individual barley varieties of a) grain; and b) malt were compared. 

When comparing barley grains proportional representation profiles of individual varieties, 

the non-malting variety AF Lucius differed the most from others. This variety showed almost 

the same areas of first three major peaks. Next, only Malz variety showed the larger area 

of peak No. 1 than in peak No. 3. Varieties Jersey and Tolar showed similar profiles, and 

large areas of last peak (corresponding to protein Z; see Table 11, Chapter 5.1.5).  

Even greater differences were evident from the malt profiles of individual varieties. Variety 

Tolar showed very large areas of peaks No. 11 and 12 (peak No. 11 represented two proteins 

in barley malt, namely β-glucosidase and β-amylase). Blanik, Bojos and Malz varieties had in 

common the very small area of the first peak. Moreover, Blaník and Bojos showed very 

similar spectra. In the AF Lucius variety profile, the smallest differences between individual 

peaks areas were evident. When comparing the chromatogram of this variety to all the others, 

the differences in the time range from 2.75 to 3 min were obvious. Some additional peaks 

were visible in this range in the chromatogram of AF Lucius.  

For the determination of the reproducibility of this method, more batches of Tolar grain 

were analyzed as well. All these extracts were analyzed in different times. Four different 

extracts were used: three samples (sample 1-3) were extracted from one sample of milled 

barley grain (Tolar 1), and one sample (sample 4) was extracted from another sample 

of milled barley grain of the same variety (Tolar 2). The proportional representations of five 



73 

 

major peaks related to peak No. 2 were calculated and expressed graphically in Figure 25. The 

profiles of Tolar grains showed good long-term reproducibility. The standard deviations 

of individual peak representations varied from 0.01 to 0.05. 

The greatest advantages of this method using HPLC separation of barley grain and malt 

aqueous extracts are its rapidity and simplicity. The comparison of C18 HPLC profiles could 

possibly be used for barley varieties discrimination. For this purpose, however, this method 

would need more optimization steps and more analyses should be performed. For example, 

the analysis of more barley varieties of grain and malt, the analysis of all of these samples 

in more batches, or the comparison of hordein profiles can be performed. 

 

Figure 25: The reproducibility of C18 HPLC separation of Tolar grains. 

5.4.2. Differences in low-molecular weight intact water-soluble proteins profiles 

of selected barley varieties 

The aim of this study was to examine the differences in low-molecular weight 

water-soluble proteins profile of three different barley varieties: Jersey (Dutch well-proven 

malting variety), Tolar (Czech malting variety allowed for the production of Czech beer) and 

AF Lucius (non-malting variety). Grain and malt proteins of selected barley varieties were 

purified using Nanosep 3k centrifugal devices and analyzed by MALDI-TOF MS operated 

in linear mode.  

Obtained spectra are shown in Figure 26. No significant differences were observed between 

the MS spectra of Jersey and Tolar grains extracts. In AF Lucius grain spectrum, the peak 

of 8.80 kDa showed higher intensity than peaks corresponding to LTP2 and LTP1b (7.10 kDa 

and 9.98 kDa, respectivelly), which is in contrast to other two varieties. This peak is present 

also in malt of AF Lucius variety, while it was not detected in Jersey and Tolar malt. The 

glycation of LTP1b protein was observed in the Jersey and Tolar malt spectrum. 

Four glycated forms of LTP1b were detected in Jersey malt spectrum, and three glycated 

forms of LTP1b were detected in Tolar malt spectrum. Conversely, only one glycated form 

of LTP1b slightly appeared in AF Lucius malt spectrum. Also protein Z fragment showed 

lower intensity in AF Lucius spectrum in comparison to Jersey and Tolar spectrum, and 

the glycation of protein Z fragment was not detected in the AF Lucius malt spectrum. 

Glycated barley proteins are important for good malting and brewing process, as well as 

for the quality of beer and beer foam. 
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Figure 26: MALDI-TOF linear mode MS spectra of low-molecular weight grain and malt 

proteins of three different varieties: a) Jersey grain; b) Jersey malt; c) Tolar grain; 

d) Tolar malt; e) AF Lucius grain; f) AF Lucius malt. The non-enzymatic glycation 

by one hexose unit is marked by a dot sign (●).
100 

From obtained results it can be concluded that used method seems to be suitable 

for distinction between malting and non-malting variety of barley malt, and for selection 

of barley varieties suitable for the malting industry. These results were published in 2010 in 

the Journal of the Institute of Brewing.
100

 

5.5. Non-enzymatic glycation of barley protein 

The large amount of D-glucose released from the starch degradation during the malting 

process causes the glycation of some barley proteins, including protein Z, LTP1 

or LTP2.
8,27,35,51,52

 This non-enzymatic modification might prevent precipitation and 

unfolding of protein Z and LTP1 during the wort boiling, which affect the presence of these 

proteins in beer and allows the influence of the beer quality. Moreover, glycation of LTP1 and 

protein Z is associated with foam-promoting properties.
8,35,51

 Therefore, the detailed 

investigation of barley proteins glycations  was performed.   
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5.5.1. Glycation of low-molecular weight proteins 

This study was published in 2010 in the Journal of the Institute of Brewing.
100 

and follows 

the chapter 5.1.7. It was found, that linear mode of MALDI-TOF MS is suitable for revealing 

of glycation of low-molecular weight proteins and monitoring of this modification during the 

malting process. The ladders of the MS peaks in MALDI-TOF MS spectra differing of about 

162 Da (Figure 17) indicate the protein glycation. Detailed view on glycation of proteins 

in the mass area from 3.2 to 20 kDa during individual stages of the malting process is shown 

in Figure 27 (variety Tolar). During the malting process, LTP1b and LTP2 forms were 

gradually glycated with up to three and two hexose units, respectively. The glycated forms 

were detected from the 3
rd

 day of the malting process.  

 

Figure 27: Linear mode MALDI-TOF MS spectra of low-molecular weight proteins from 

individual stages of the malting process: a) grain; b) 1
st
 day of malting; c) 2

nd
 day of malting; 

d) 3
rd

 day of malting; e) 4
th

 day of malting; f) 5
th

 day of malting; g) green malt; h) malt. The 

non-enzymatic glycation by one hexose unit is marked by a dot sign (●).  
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Protein Z C-terminal 363 – 399 fragment was detected from the 3
rd

 day of the malting 

process. The glycation of protein Z fragment with one hexose unit was slightly detected from 

the 4
th

 day of the malting process. Glycated proteins are formed by reaction of free amino 

groups of lysine, arginine or N-terminal amino acid residues.
25,27

  The amino acid sequence 

of protein Z obtained from UniProtKB database
101

 (entry P06293) is shown in Figure 28. 

From the amino acid sequence of protein Z fragment (highlighted by blue colour) it can 

be assumed that this fragment may be glycated via amino group of Arg379 or N-terminal 

Val363 residue.   

 

Figure 28: The amino acid sequence of protein Z (UniProtKB entry P06293)
101

. Protein Z 

C-terminal 363 – 399 fragment is highlighted by blue colour and glycated Lys276 residue 

by red colour. Identified tryptic and chymotryptic peptides containing Lys276 residue are 

highlighted by dashed and full underline, respectively.  

5.5.2. Glycation of protein Z 

The glycation of proteins can be also detected by mass spectrometric fragmentation 

of glycated peptide. This study is focused on protein Z. After SDS-PAGE separation of barley 

grain and malt, bands corresponding to this protein were excised and protein Z was in-gel 

digested using two proteases – trypsin and chymotrypsin. Purified peptides were analyzed 

by MALDI-TOF/TOF MS. 

Using tryptic digestion, a little bit higher coverage was obtained. Therefore, trypsin is 

slightly better enzyme of choice for identification of this kind of proteins. However, 

chymotrypsin was used in previous studies of protein glycation due to the trypsin cleavage 

specificity from C-terminal to Lys and Arg residues. These residues were expected to be 

glycated and thus resistant to tryptic hydrolysis of peptide bonds.
27,73
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Figure 29: MALDI-TOF MS spectrum of barley malt sample. Bold highlighted peptides 

correspond to protein Z. The peptide of m/z 2619 represents a Lys-glycated protein Z peptide 

of m/z 2457 (S264-F284). 

The MS spectrum of malt protein Z digested by chymotrypsin including identified peptides 

corresponding to protein Z (highlighted in bold) is shown in Figure 29. The peptide 

of m/z 2619 was not detected in barley grain and differs from protein Z peptide of m/z 2457 

(S264-F284) about 162 Da, which indicated the glycation of this peptide. This suspicion was 

confirmed after MS/MS fragmentation of this peptide (Figure 30). Several b- and y- fragment 

ions, glycated y-fragment ions, immonium ion Lys–Hex
102

, and the peptide ion fragment after 

loss of hexose were identified in the MS/MS spectrum. This peptide is supposed to be 

glycated via Lys276 residue. 

 

Figure 30: MALDI-TOF/TOF MS/MS fragmentation spectrum of non-enzymatically glycated 

peptide of m/z 2019. The glycation by one hexose unit is marked by a dot sign (●). 

In addition, protein Z digested with trypsin was used for investigation of glycation using 

this method. The non-modified tryptic peptide of m/z 1652 (R262-K276), containing the 

potentially glycated Lys276 residue was identified in the barley malt sample. Nevertheless, no 

corresponding Lys-glycated peptide was detected. This confirms that glycated Lys residues 

are probably resistant to tryptic hydrolysis of peptide bonds.  
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MALDI-TOF MS is a suitable method for the analysis of non-enzymatically glycated 

proteins. The linear mode of TOF analyzer was successfully applied for the rapid monitoring 

of the level of low-molecular weight barley proteins glycation (namely ns-LTPs and fragment 

of protein Z) in individual steps of the malting process. However, this method is applicable 

only to low-molecular weight proteins because larger proteins hardly ionize by MALDI. 

The glycation of larger proteins can be analyzed after SDS-PAGE separation and 

chymotryptic digestion by the reflectron mode of MALDI-TOF MS. This method 

was successfully applied on analysis of glycated protein Z. The information about the proteins 

glycation is very important for maltsters and brewers because the glycation of barley proteins 

increase their stability, and therefore glycated proteins survive the malting and brewing 

process and positively influence the beer properties.
8
 

5.6. Glycosylation of barley proteins 

N-glycosylation represents the most frequently studied post-translational modification 

in plants. Study of barley glycoproteins is important for the agricultural and brewing industry 

due to impact of glycosylation on physicochemical properties and biological functions 

of proteins.
23,18,103

 In addition, many plant glycoproteins are known to act as sensitizing agents 

in humans upon repeated exposure.
45

 

Therefore, another task of this thesis was the investigation of barley glycoproteins. 

The enrichment of glycoproteins from a complex mixture is required for their analysis 

because modified proteins are often expressed with low abundance.
3,15

 Barley water-soluble 

glycoproteins were analyzed after enrichment using one of the most well characterized and 

widely used lectin Concanavalin A (ConA) that binds to α-mannosyl and α-glucosyl 

residues.
72

 

5.6.1. Glycoprotein enrichment using ConA lectin affinity column 

Water-extracted proteins from barley grain and malt (variety Jersey) were separated 

by affinity chromatography on manually prepared columns packed with ConA-agarose. 

In comparison to previous studies, higher concentration of barley sample was chosen to obtain 

sufficiently concentrated minor bound glycosylated fraction in one affinity step. The sample 

was loaded in two steps to achieve perfect occupation of ConA binding sites. This process 

was optimized previously by Laštovičková in her doctoral thesis.
104

  

Subsequently, bound and unbound protein fractions were separated by SDS-PAGE on the 

precast gradient gel. From gels of both barley grain and malt shown in Figure 31 it is evident 

that the majority of proteins occurred in the unbound fraction, and minor glycosylated 

proteins were found in the bound fraction. Individual proteins were excised, in-gel digested 

with trypsin, and identified by MALDI-TOF/TOF MS. Table 14 shows identified proteins in 

the bound grain and malt fractions. The ConA enrichment allows the identification of minor 

barley glycoproteins that were not able to be identified in the complex samples. 

Preliminary results of this study were published in the journal Chromatographia in 2011.
106

 

However, some proteins remain unidentified even after numerous analyzes. Nevertheless, 

in February 2013, the obtained data were researched with the updated NCBInr database, 

resulting in the identification of additional proteins including several predicted proteins 

in both barley grain and malt (see Table 14). All identified proteins in both barley grain and 
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malt samples have at least one potential N-glycosylation site in their sequence, which means 

that some N-glycans can be attached to these Asn residue. Some of the barley grain and malt 

proteins identified in the bound fraction are even proven glycoproteins and/or allergens 

according to databases
101,105

 (mentioned in the Table 14).   

 

Figure 31: SDS-PAGE separation of the ConA AC unbound and bound fractions of barley 

a) grain; and b) malt. Protein bands from the bound fractions above the marked lines were 

analyzed. 

Many barley malt and grain possible glycoproteins were identified after this separation 

method. Nevertheless, used manually prepared ConA column evinced one big problem. 

Concanavalin A was bleeding of the column and it resulted in occurrence of very intensive 

band in the SDS-PAGE gel that could overlay some important barley glycoproteins. 

Moreover, ConA was not detected only in this one band, but in the mass spectra of other 

bands as well (mainly in protein bands in the mass range of 10 – 40 kDa). The example of the 

identification of malt spot No. 7 is shown in the Figure 32. ConA is the predominant protein 

even in this band and the α-amylase inhibitor BMAI-1 was identified with the third highest 

score.  

Therefore, we decided to find another column that would have the more firmly bound 

ConA resin. Successful results were obtained using the monolithic ConA HPLC column. This 

method is described in the next chapter. 
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Table 14: Proteins identified in barley grain and malt after ConA AC and SDS-PAGE 

separation. The molecular function of individual proteins
101,105

 and the amino acids (AA) 

triplet of possible N-glycosylation sites (N-X-S/T; X ≠ P) ale listed in the table as well. 

spot 

No. 
grain malt 

UniProtKB 

entry 
molecular function 

possible N-glycosylation sites  

quantity position (AA triplet) 

1. 

predicted protein F2DV95 peptidase activity 8x 

92 (NDT); 157 (NAT); 

217 (NVT); 360 (NLT); 

366 (NET); 502 (NGT); 

596 (NYS); 720 (NTS) 

 
beta-D-xylosidase Q8W011 

hydrolase activity, 

hydrolyzing O-glycosyl 

compounds 

4x 
203 (NSS); 432 (NAS); 

473 (NVS); 710 (NAT) 

purple acid phosphatase isoform a C4PKL2 
acid phosphatase activity, 

metal ion binding 
8x 

140 (NYT); 205 (NTT); 

236 (NGT); 292 (NKT; 

414 (NYT); 465 (NFT); 

500 (NET); 536 (NST) 

2. predicted protein F2DJN8 

alpha-mannosidase activity, 

carbohydrate binding, zinc ion 

binding 

7x 

30 (NTS); 58 (NNS); 273 

(NVT); 465 (NIT); 475 

(NFS); 523 (NAS); 727 

(NKT) 

3. 

predicted protein F2CYL7 nutrient reservoir activity 3x 
228 (NTT); 371 (NLT); 

405 (NGS) 

 
beta-amylase Q9FUK6 

beta-amylase activity, cation 

binding (allergenicity) 
4x 

237 (NDT); 249 (NGT); 

338 (NFT); 402 (NQS) 

4. serine carboxypeptidase II P08818 
serine-type carboxypeptidase 

activity (glycoprotein) 
7x 

148 (NTS); 159 (NRT); 

291 (NIS); 341 (NVT); 

347 (NYT); 352 (NCS); 

472 (NVT) 

5. concanavalin A P02866 mannose binding, metal ion binding 

6. 

germin B Q9FYY4 
manganese ion binding, 

nutrient reservoir activity 
1x 

79 (NVT) 

germin F Q9FYY3 79 (NVT) 

germin D Q9FYY2 78 (NVT) 

7. alpha-amylase inhibitor BMAI-1 P16968 

alpha-amylase and serine-type 

endopeptidase inhibitor 

activity (glycoprotein, 

allergenicity) 

1x 125 (NGT) 

 

5.6.2. Glycoprotein enrichment using ConA HPLC column 

To avoid the problems with bleeding of ConA from the column, glycoprotein enrichment 

using ProSwift ConA-1S monolithic HPLC column was performed. This column consists 

of polymeric monolith prepared by in-column polymerization, followed by functionalization 

with ConA. According to the manufacturer, this column and its HPLC compatibility provide 

high throughput, efficiency and accurate analysis.
72

 

5.6.2.1. Optimization of glycoprotein enrichment using ConA HPLC column 

The separation on ConA-1S monolithic HPLC column had to be optimized for sufficient 

separation of barley grain and malt samples. First, N-glycosylated and non-glycosylated 

protein standards were separated on this column for the efficiency testing, namely 

ribonuclease A (non-glycosylated protein) and ribonuclease B (RNase B). RNase B 

is glycoprotein containing high-mannose type N-glycans and frequently used for study 

of N-glycosylation. From chromatograms of these two standard proteins separations was 

evident that this column capture glycosylated protein.  
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Figure 32: The Mascot identification of malt spot No. 7 corresponding to α-amylase inhibitor 

BMAI-1, contaminated by ConA. 

Afterwards, separation of barley grain and malt sample was optimized. Some separation 

conditions (namely composition of mobile phases and temperature) were set according to the 

column manual. Flow rate was set on 0.5 mL/min, when the column pressure was optimal and 

the separation time was acceptable. Concentration of the sample was set on 50 mg/mL at loop 

volume of 50 μL. At this concentration, the bound fraction showed sufficient intensity 

of detector response, especially when minor glycoproteins from barley grain were separated. 

Most importantly, the optimization of the washing step period was performed to completely 

remove the unbound protein fraction. This optimization was accomplished using the malt 

sample and is shown in Figure 33. When the eluting mobile phase B was loaded at 2.3 minute, 

the unbound protein fraction was not completely removed (Figure 33a). Consequently, 

the washing step was greatly extended. The elution mobile phase was loaded at 13.5 min, 

which resulted in complete washing of the non-glycosylated proteins (Figure 33c); however, 

the washing step seemed to be needlessly long. Therefore, the optimal gradient of mobile 

phases was set as follows: 100 % of mobile phase A in 10 min, 100 % of mobile phase B from 

10.5 to 20 min (Figure 33b). 

Figure 34 shows the optimized chromatogram of barley malt. When the peak areas 

of the bound and unbound fractions were compared, only approximately 10 % of malt protein 

content and 3 % of grain protein content were detectable in the bound fraction at 214 nm.  

This study was published in 2013 in the Journal of Liquid Chromatography & Related 

Technologies.
103
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Figure 33: Overlaid HPLC chromatograms from the mobile phase gradient optimization 

process of ConA HPLC separation: a) mobile phase B was loaded at 2.5 min; b) mobile 

phase B was loaded at 10.5 min (gradient chosen for subsequent separation); and c) mobile 

phase B was loaded at 13.5 min. Mobile phase A contains microelements in Tris buffer, 

mobile phase B contains α-MMP in the mobile phase A. Very good reproducibility of this 

process was also evident from these chromatograms.
103 

5.6.2.2. Analysis of barley malt and grain glycoproteins 

Water-soluble proteins extracted from barley grain and malt were separated on ConA-1S 

monolithic affinity HPLC column. Collected bound and unbound fractions were dialyzed, 

lyophilized and separated on linear gradient polyacrylamide gel 4 – 20 %. Individual bands 

of the ConA captured proteins were in-gel digested with chymotrypsin and after ZipTip C18 

purification identified by MALDI-TOF/TOF MS. 

 

Figure 34: optimized HPLC ConA separation of barley malt: a) HPLC chromatogram; 

b) mobile phase gradient used for glycoproteins separation. Mobile phase A contained 

microelements in Tris buffer, mobile phase B contained α-MMP in the mobile phase A.
103
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With regard to further study of barley N-glycopeptides (chapter 5.6.4), a less specific 

chymotrypsin was used for ConA retained proteins digestion. It was found that tryptic digest 

will not give peptides of suitable size for study of glycopeptides. When some potential 

glycoproteins identified in barley grain or malt samples are theoretically digested with trypsin, 

only a few or no peptides containing the potential N-glycosylation site smaller than 3 kDa are 

created.
107 

Chymotrypsin cleaves proteins of interest in smaller peptides, and therefore this 

enzyme was predominantly used for these studies.  

 

 

Figure 35: SDS-PAGE separation of the ConA HPLC unbound and bound fractions of barley 

a) grain; and b) malt. Protein bands from the bound fractions above the marked lines were 

analyzed.
103

 

SDS-PAGE separations of barley grain and malt bound and unbound fractions are shown in 

Figure 35. Proteins identified in the bound fractions of barley grain and malt are summarized 

in the Tables 15 and 16, respectively. In barley grain, all identified proteins have at least one 

potential N-glycosylation site in their sequence. This fact means that all identified proteins in 

grain ConA bound fraction are possible N-glycoproteins. Nevertheless, the real possibility 

of N-glycosylation site occupancy is difficult to find out without knowing the crystallographic 

structure of the protein or without the study of glycopeptides or glycans after deglycosylation. 

The direct analysis of both glycan and peptide part is possible only when the glycan chain 

is relatively simple. But large glycan-substituted peptides are problematic to measure 

by MALDI-TOF/TOF MS because of their large mass and their tendency to be heterogeneous 

which results in peak broadening.
3
 Moreover, non-glycosylated peptides interfere with 

ionization of glycopeptides and cause their considerable ion suppression.
85
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Table 15: Proteins identified in barley grain after HPLC ConA and SDS-PAGE separation. 

The molecular function of individual proteins
101,105 

and the amino acids triplet of possible 

N-glycosylation sites (N-X-S/T; X ≠ P) ale listed in the table as well. 

spot 

No. 
name of identified protein 

UniProtKB 

entry 
molecular function 

possible N-glycosylation sites 

quantity position (AA triplet) 

1. beta-glucosidase Q40025 

cation binding; hydrolase 

activity, hydrolyzing 

O-glycosyl compounds 

3x 
86 (NGT); 356 (NQT); 

423 (NVS) 

2. 

predicted protein F2E2X6 
aspartic-type endopeptidase 

activity 
4x 

247 (NIT); 245 (NWT); 

359 (NQT); 422 (NFT) 

predicted protein F2DP98 
serine-type carboxypeptidase 

activity 
3x 

45 (NSS); 187 (NPT); 

267 (NVT) 

3. predicted protein F2DIK1 
unknown 

ferritin-like protein family 
2x 85 (NLT); 151 (NTT) 

4. predicted protein F2CYL7 nutrient reservoir activity 3x 
228 (NTT); 371 (NLT); 

405 (NGS) 

5. alpha-amylase inhibitor BMAI-1 P16968 

alpha-amylase and serine-type 

endopeptidase inhibitor 

activity (glycoprotein; 

allergenicity) 

1x 125 (NGT) 

6. alpha-amylase/trypsin inhibitor CMb P32936 

alpha-amylase and serine-type 

endopeptidase inhibitor 

activity 

(glycoprotein; allergenicity) 

1x 124 (NLT) 

 

In contrast to barley grain, not all proteins identified in the ConA retained malt fraction are 

possible N-glycoproteins. Considering the fact that ConA bounds mannosyl and glucosyl 

residues, also non-enzymatically glycated proteins that are highly created during the malting 

process may be probably captured by this column. Another possibility is retention of non-

specifically bound proteins as the result of commonly occurring protein-protein 

interactions.
108

 

Table 16: Proteins identified in barley malt after HPLC ConA and SDS-PAGE separation. 

The molecular function of individual proteins
101,105

 and the amino acids triplet of possible 

N-glycosylation sites (N-X-S/T; X ≠ P) ale listed in the table as well.
103

 

spot 

No. 
name of identified protein 

UniProtKB 

entry 
molecular function 

possible N-glycosylation sites 

quantity position (AA triplet) 

1. 

beta-D-xylosidase Q8W011 

hydrolase activity, 

hydrolyzing O-glycosyl 

compounds 

4x 
203 (NSS); 432 (NAS); 

473 (NVS); 710 (NAT) 

predicted protein F2DD64 

hydrolase activity, 

hydrolyzing O-glycosyl 

compounds 

6x 

41 (NYT); 146 (NET); 

462 (NAT); 521 (NMS); 

539 (NQT), 660 (NFS) 

2. 

beta-amylase P16098 
beta-amylase activity; cation 

binding (allergenicity) 
4x 

237 (NDT); 249 (NGT); 

338 (NFT); 402 (NQS) 

beta-glucosidase Q40025 

cation binding; hydrolase 

activity, hydrolyzing o-

glucosyl compounds 

3x 
86 (NGT); 356 (NQT); 

423 (NVS) 

3. alpha-amylase type B isozyme P04063 
alpha-amylase activity; cation 

binding 
1x 372 (NES) 

4. protein z-type serpin P06293 

nutrient reservoir activity; 

serine-type endopeptidase 

inhibitor activity 

(allergenicity) 

2x 93 (NES); 170 (NTT) 

D      
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spot 

No. 
name of identified protein 

UniProtKB 

entry 
molecular function 

possible N-glycosylation sites 

quantity position (AA triplet) 

5. 

predicted protein F2DIK1 
unknown; ferritin-like protein 

family 
2x 85 (NLT); 151 (NTT) 

serine carboxypeptidase I P07519 
serine-type carboxypeptidase 

activity (glycoprotein) 
3x 

148 (NVS); 262(NAT); 

407 (NLT) 

6. predicted protein F2EBM4 nutrient reservoir activity 5x 

140 (NAT); 222 (NWT); 

300 (NLT); 426 (NGS); 

469 (NTT) 

7. 

chain C, Amy2BASI PROTEIN-protein 

complex from barley seed 
P07596 

alpha-amylase inhibitor 

activity; serine-type 

endopeptidase inhibitor 

activity 

N/A - 

cold-regulated protein Q9FSI8 
phosphatidylethanolamine-

binding 
1x 73 (NIS) 

8. 

alpha-amylase/trypsin inhibitor CMd P11643 

alpha-amylase inhibitor 

activity; serine-type 

endopeptidase inhibitor 

activity 

N/A - 

putative splicing factor 3b A7Y0E4 nucleic acid binding 1x 235 (NET) 

alpha-amylase inhibitor BMAI-1 P16968 

alpha-amylase and serine-type 

endopeptidase inhibitor 

activity (glycoprotein; 

allergenicity) 

1x 125 (NGT) 

9. 

alpha-amylase/trypsin inhibitor CMb P32936 

alpha-amylase and serine-type 

endopeptidase inhibitor 

activity (glycoprotein, 

allergenicity) 

1x 124 (NLT) 

alpha-amylase/trypsin inhibitor CMa P28041 

alpha-amylase and serine-type 

endopeptidase inhibitor 

activity (glycoprotein, 

allergenicity) 

N/A - 

 

Some of the barley grain and malt proteins identified in the bound fraction are proven 

glycoproteins according to database
101

 (mentioned in the Tables 15 and 16).  Nevertheless, the 

glycosylation of the other proteins is not known yet, moreover, several identified proteins are 

still named ―predicted proteins‖, especially in the grain sample. This implies that this area of 

barley minor glycoproteins is still little studied. The MS spectrum corresponding to predicted 

protein (UniProtKB entry F2DIK1, its amino acid sequence and MS/MS fragmentation of one 

peptide is shown in Figure 36. 

Some of the identified proteins are also known to act as sensitizing agents according 

to database
105

 (mentioned in the Tables 15 and 16). The N-linked glycans of plant and insect 

glycoproteins are the most abundant environmental immune determinants. The two main 

motifs in allergenic N-glycans are the xylose and the core-3-linked fucose.
46

 In barley, most 

of the allergenic proteins characterized so far belong to the α-amylase/trypsin inhibitor 

family.
43 

 Both β(1-2) xylose and α(1-3) fucose have been found in glycosylated inhibitors 

BMAI-1 and CMb
45

 that were identified in our study in ConA captured fraction of barley 

grain as well as malt.  

The enrichment of glycoproteins on ConA HPLC column was successfully optimized. 

Thanks to this, several minor potential glycopeptides were identified in the barley grain and 

malt samples.  
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Figure 36: Illustration of MALDI-TOF/TOF MS identification of predicted protein 

(UniProtKB entry F2DIK1): a) MS spectrum with labelled identified peptides after PMF 

and MS/MS analysis; b) MS/MS fragmentation of peptide of m/z 1839 (S278-Y293); 

c) amino acid sequence with marked N-glycosylation potential sites (in red) and identified 

peptides (in blue) after PMF and MS/MS analysis (in bold). 

In comparison to manually filled columns with ConA-agarose (chapter 5.6.1), ConA-1S 

monolithic column showed several improvements. As the most important one, the ConA 

stationary phase was firmly bound to the monolithic column. Therefore, the stationary phase 

was not washed easily and this column did not evince problem with ConA bleeding that 

caused complications when manually filled columns were used. This is very helpful for 

protein identification because ConA does not shield minor barley proteins with similar mass. 

The main advantage of manually filled columns is their low cost purchase. Nevertheless, 

the glycoprotein enrichment using manually filled columns requires manual operations, 

especially for eluent loading and changing. The separation is time consuming because 

the flow rate is regulated by gravity only. Contrarily, the separation on ConA-1S column 

is faster due to the high pressure applied to the column (one separation, including column 

equilibration, took about 20 – 30 minutes), some operations are automated, and separated 

proteins are directly detected.    
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Moreover, Cona-1S column showed a very good reproducibility. The time of bound 

fraction elution remained still constant and therefore, using some suitable equipment, the 

whole process can be automated. Also, the profile of bound proteins on gel after SDS-PAGE 

separation remained identical, which was more difficult to achieve with the manually 

prepared columns.  

This study was published in 2013 in the Journal of Liquid Chromatography & Related 

Technologies.
103

 

5.6.3. Protein deglycosylation and glycan analysis 

The most common approach in characterization of N-linked glycosylation involves the 

release of glycans from the isolated glycoprotein.
77 

Protein deglycosylation can be achieved 

in a single step using several enzymes, for example PNGase F that hydrolyze the bond 

between the Asn side chain and the proximal GlcNAc of the oligosaccharide part.
23

  

In this chapter, the optimization of deglycosylation process using standard glycoproteins, 

subsequent glycans purification and analysis using both MALDI-TOF and LC-ESI MS 

methods is described. Then, also barley grain and malt glycoproteins enriched by ConA 

HPLC and separated on SEC column were deglycosylated and analyzed using the optimized 

methods.  

5.6.3.1. Optimization of protein deglycosylation process 

The deglycosylation of glycoproteins using the enzyme PNGase F (from Elizabethkingia 

meningosepticum) was optimized using two model glycoproteins: RNase B, and ovalbumin. 

RNase B contains only high mannose-type N-glycans with the structure GlcNAc2Man5-9 

attached to Asn60. Contrary, N-linked glycans in ovalbumin consist of both hybrid-type and 

high-mannose-type oligosaccharides.
83

   

With the aim to follow the used method of SDS-PAGE separation of ConA bound proteins, 

the in-gel deglycosylation method was optimized. Standard glycoproteins were separated 

by SDS-PAGE on 12% manually prepared gel and on precast linear gradient polyacrylamide 

gel 4 – 20 %. The glycoprotein bands were excised, and subsequently, reduced and alkylated 

proteins were in-gel deglycosylated using PNGase F. Three protein quantities were applied on 

the gel (7 μg, 3 μg and 1 μg) and the deglycosylation was performed using 6, 3 and 1 units 

of enzyme. However, no glycans were detected in either one sample after purification by C18 

pipette tips and/or carbon tips (optimized purification methods are mentioned below).  

Accordingly, we tried to in-solution deglycosylate the standard glycopeptides after 

SDS-PAGE and in-gel tryptic digestion. In the MALDI-TOF MS spectra, several peptides 

were detected. After peptides capture on C18 pipette tips, some peptides were still slightly 

visible and no glycans were detected. Even when samples were purified on carbon tips, 

no glycans were detected; also this procedure was not successful as well. 
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Figure 37: MALDI-TOF MS spectrum of deglycosylated RNase B sample without 

purification. RNase B glycans are highlighted in bold. 

Therefore, the optimization of in-solution protein deglycosylation was performed. Standard 

glycoproteins were deglycosylated according to Laštovičková et al.
81

 Even without 

purification, RNase B glycans were detected by MALDI-TOF MS, which confirmed the 

success of this method. (Figure 37) However, the intensity of glycans response in the MS 

spectra was low and some purification step was required. The purification of obtained glycans 

was optimized and all tested methods are described in the next chapter. 

Table 17: Optimization of in-solution deglycosylation process using two standard 

glycoproteins: RNase B and ovalbumin.  

Sample No. glycoprotein (1 mg/mL) DTT (50 mM) PNGase F 

1. 

0.05 mg (50 μL) 50 μL 

4 U 

2. 2 U 

3. 0.5 U 

4. 

0.01 mg (10 μL) 10 μL 

1 U 

5. 0.5 U 

6. 0.2 U 

7. 

0.005 mg (5 μL) 5 μL 

1 U 

8. 0.5 U 

9. 0.2 U 

10. 0.001 mg (1 μL) 1 μL 0.5 U 

 

In addition, the in-solution deglycosylation process was optimized using various 

combinations of protein and enzyme concentrations (Table 17). Regarding RNase B, majority 

of used concentrations combinations provided spectra with very good intensity. Only 

the sample No. 10 with protein concentration of 0.001 mg provided very poor MS spectra. 

Samples No. 7, 8 and 9 containing 0.005 mg of ovalbumin provided spectra with lower 

intensity than samples obtained from more concentrated sample. According to obtained 

results, PNGase F has high efficiency, and the high concentration of this enzyme was not 

needed for these standard glycoproteins. The minimal protein amount of 0.01 mg and 0.2 U 

of PNGase F seems to be suitable for successful glycan analysis for these types of samples.    
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5.6.3.2. Optimization of glycan purification 

The glycan purification optimization was performed using samples of glycans released 

from 0.05 mg of RNase B. Sample purification using two types of carbon tips, Supel-Tips 

Carbon Micropipette Tips (maximum volume of 10 μL) and HyperSep Tips Hypercarb 

(maximum volume of 200 μL; Thermo Scientific, part of Thermo Fisher Scientific)  was 

performed. Samples were diluted in water and slowly aspirated on activated tip and expelled 

back into the tube for approximately ten times. After water washing, bound glycans were 

eluted using 30% ACN. Using carbon Supel-Tips, satisfying results were achieved and the 

signal of glycans in MS spectra was improved. Contrary, after purification by HyperSep Tips, 

no glycans were detected. This may be caused by a large capacity of these tips together with 

low glycan concentration in the sample, or by different porosity of the carbon resin. 

Therefore, for further purification processes, carbon Supel-Tips were used. 

In addition, deglycosylated protein was removed from the sample by capturing on C18 

reversed phase to further improve the quality of the spectra. Again, two types of C18 pipette 

tips were tested, a tip with maximum volume of 10 μL (used for peptide purification), and 

a tip with maximum volume of 100 μL (OMIX tips, Varian, Walnut Creek, CA, USA). 

After purification using 10 μL C18 pipette tip, the capacity of the resin was insufficient and 

protein traces remained in the solution (measured by MALDI-TOF MS in linear mode using 

DHB/SA matrix). Majority of proteins were removed using 100 μl C18 pipette tips. 

However, the efficiency of both C18 pipette tips purification depends on the protein 

concentration in the sample.  

For conclusion of this chapter, the successful results were obtained by combination 

of protein removal using C18 pipette tips and glycan desalting and purification using carbon 

pipette tips. After C18 purification, the sample dissolved in 0.1% TFA can be directly purified 

on carbon Supel-Tips. This purification method was used for all other samples. 

The example of MALDI-TOF MS spectrum of purified RNase B glycans is shown 

in Figure 38. According to the literature, neutral carbohydrates ionize easily in MALDI-TOF 

MS positive ion mode under the formation of [M + Na]
+
 as major ionic species, frequently 

accompanied by a less-abundant [M + K]
+
 ion (where M represents the molecule of glycan).

14
 

These two species were observed in the MS spectra as a pair of peaks differing of about 

16 Da. Without glycan purification (as well as after C18 purification only), the potassiated 

glycans [M + K]
+
 were more intensive than the sodiated glycans [M + Na]

+
 (see Figure 37). 

After carbon purification, the intensity of sodiated glycans increased (see Figure 38). 

The good intensity of sodiated glycans is important for successful MS/MS glycans 

fragmentation that is described in the chapter 5.6.3.4.  
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Figure 38: MALDI-TOF MS spectrum of RNase B glycans. Sodiated glycans (more intensive) 

and potassiated glycans differing of about 16 Da were detected and are highlighted in bold. 

The corresponding glycan structure is indicated as well. 

5.6.3.3. The determination of suitable matrix for glycan analysis by 

MALDI-TOF MS 

For the analysis of neutral carbohydrates, one of the first and still the most common 

matrices is 2,5-dihydroxybenzoic acid (DHB).
14

 When the sample with DHB is crystallizing 

on the target, DHB tends to form large crystals at the periphery of the spot. The central region 

usually contains an amorphous mixture of sugar, contaminants, and salts. In order to produce 

a more homogeneous spot, the crystals may be recrystallized from ethanol to form 

a microcrystalline surface which improves the sensitivity of measurement.
14,109

 

Therefore as the first choice of our experiments, various DHB concentrations and ACN 

concentrations in solvent were tested. The best results were obtained using the DHB 

concentration of 25 mg/mL in 40% ACN/0.1% TFA. Nevertheless, DHB crystallized in long 

needle-shaped crystals, which is in agreement with literature.
14

 Since DHB spots were not 

homogenous, crystals needed to be manually targeted when MALDI-TOF MS analysis was 

performed. Moreover, one spot was suitable only for a few measurements because the sample 

amount was greatly reduced after laser ionization. After recrystallization in ethanol, DHB 

formed a homogenous spot; however, the sensitivity increase was not observed and 

the problem with rapid consumption of the sample remained.  

Therefore, various MALDI matrices and binary matrices were tested for RNase B and 

ovalbumin glycans analysis. The 2-(4-hydroxyphenyl)azobenzoic acid (HABA) should give 

a fine crystalline surface and much more pronounced fragmentation.
109

 The mixture 

of 2,4,6-trihydroxyacetophenone with diammonium citrate (THAP/DAC) is a suitable matrix 

for analysis of mixtures of neutral and acidic glycans in both positive and negative ion.
14

 

Using this matrix, Hao et al.
110

 obtained a better result in the MS analysis of neutral glycans 

than using DHB matrix. THAP/DAC provided better signal-to-noise ratio, signal intensity and 

also better shot-to-shot and sample-to-sample reproducibility.
110
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According to these studies, THAP/DAC matrix was prepared by dissolving of 7.5 mg 

of THAP in 1 ml of ACN/20 mM ammonium citrate (1:1 v/v), and the HABA matrix was 

prepared in the concentration of  10 mg/ml in ACN/0.1% TFA 1:1, v/v. As the result, HABA 

matrix provided good MS spectra of RNase B glycans; however, ovalbumin glycans were not 

detected. The THAP/DAC matrix provided very poor spectra of RNase B and ovalbumin 

glycans.  

To improve the crystallization of sample with DHB matrix and simultaneously preserve the 

good sample ionization properties of this matrix, DHB matrix was mixed in 1:1 (v/v) ratio 

with CHCA and SA matrix. DHB/CHCA binary matrix provided slightly weaker spectra, 

especially for ovalbumin glycans. DHB/SA binary matrix was a suitable matrix for these 

types of glycans. This matrix provided spectra with similar intensity to DHB. As an important 

improvement, small crystals were formed and the spot was homogenous. Moreover, this 

binary matrix allowed also an efficient analysis of intact low-molecular weight proteins in the 

linear mode of MALDI-TOF MS for the control of purification and deglycosylation process. 

Therefore, DHB matrix and DHB/SA binary matrix were used in further MALDI-TOF MS 

analyses of glycans. 

5.6.3.4. Analysis of standard glycans by MALDI-TOF/TOF 

The MS spectrum of RNase B glycans obtained after optimized purification is shown 

in Figure 38. DHB/SA was used as a matrix. In the spectrum, five major pairs of peaks are 

visible. Each pair of peaks differs by 16 Da, which represents the difference between sodium 

and potassium ion adducts. The sodiated glycans [M + Na]
+
 are more intensive and 

correspond to five RNase B glycans (GlcNAc2Man5-9). All glycan ions were subjected 

to MS/MS CID fragmentation. Nevertheless, the potassiated glycans were poorly fragmented 

and only the fragmentation of sodiated glycans provided satisfying results. The illustration 

of MS/MS spectrum of RNase B is shown in Figure 39. 

 

 

Figure 39: MALDI-TOF/TOF MS/MS fragmentation spectrum of RNase B glycan 

GlcNAc2Man6 (m/z 1419).   

The MS spectrum of ovalbumin glycans is shown in Figure 40. DHB/SA was used as 

a matrix. Several glycans were detected in the MS spectrum and the glycan structures were 

assigned according to Harvey et al.
111 

Nevertheless, the fragmentation of ovalbumin glycans 

resulted in poor fragmentation spectra that did not allow the identification of these glycans. 
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Figure 40: MALDI-TOF MS spectrum of ovalbumin purified glycans. The labelled glycan 

structures were assigned according to Harvey et al.
111

 

5.6.3.5. Analysis of standard glycans using LC-ESI MS 

Since the results from MALDI-TOF/TOF MS analysis of standard glycans were not fully 

convincing, glycans were analyzed using LC-ESI MS as well. Purified glycans were separated 

on Prevail Carbohydrate ES column in the following mobile phase‘s gradient: from 70% 

to 50% ACN in 5 min, followed by 50% ACN for 10 min. Separated glycans were detected in 

the positive mode using Esquire LC ion-trap mass spectrometer equipped with an ESI source.  

 

Figure 41: Ion chromatogram (total ion current) of: a) RNase B; b) ovalbumin. 
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The obtained ion chromatogram (total ion current) of standard samples is shown 

in Figure 41. Five signals were analyzed in RNase B and six signals in ovalbumin sample. 

When comparing both ion chromatograms, RNase B shows higher signal intensity. It may 

be caused for example by different sample concentration of by presence of contaminants. 

Glycans detected after ESI MS analysis are listed in the Table 18. The structures 

of ovalbumin glycans were assigned according to Harvey et al.
111

 

Table 18: RNase B and ovalbumin glycans identified after LC-ESI MS. Structures 

of ovalbumin glycans were assigned according to Harvey et al.
111

 

ribonuclease B 
time  

[min] 
[M + Na]+ glycan structure  

1 10.3 – 10.5 1257.7 GlcNAc2Man5 
 

2 10.8 – 11.0 1419.7 GlcNAc2Man6 
 

3 11.1 – 11.4 1581.9 GlcNAc2Man7 
 

4 11.5 – 11.8 1744.0 GlcNAc2Man8 
 

5 11.8 – 12.0 1906.0 GlcNAc2Man9 
 

ovalbumin     

1 8.5 – 8.8 933.6 GlcNAc2Man3  

2 9.0 – 9.5 1136.6 GlcNAc2Man3GlcNAc 
 

3 9.7 – 9.9 1339.8 GlcNAc2Man3GlcNAc2  

4 10.3 – 10.4 1258.8 GlcNAc2Man5 
 

5 10.8 – 10.9 1419.8 GlcNAc2Man6 
 

6 11.0 – 11.1 1460.9 GlcNAc2Man5GlcNac 
 

 
 

 The ESI-MS/MS spectra of all glycans were measured. The example of fragmentation 

spectrum of high-mannose RNase B glycan (m/z 1419) is shown in Figure 42, 

and fragmentation spectrum of complex ovalbumin glycan (m/z 1339) is shown in Figure 43. 

The mass decrease of 18 Da indicated a loss of water molecule. The differences of 203 Da 

and 162 Da indicated the cleavage of GlcNAc and mannose residues, respectively. 
0,2

X cleavages of GlcNAc residue were observed as well. 

 

When comparing the analysis by MALDI-TOF MS and LC-ESI MS, LC-ESI MS resulted 

in better MS/MS glycan fragmentation and spectra with higher signal intensities were 

obtained. Nevertheless, larger number of ovalbumin glycans was detected by MALDI-TOF 

MS. Therefore, the optimal way to obtain the best result of glycan identification involves the 

combination of both MS methods.   
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Figure 42: LC-ESI MS/MS fragmentation spectrum of RNase B glycan GlcNAc2Man6 

(m/z 1419, 10.8 – 11.2 min).   

 

Figure 43: LC-ESI MS/MS fragmentation spectrum of ovalbumin glycan 

GlcNAc2Man3GlcNAc2 (m/z 1339, 9.7 – 10.0 min).   

5.6.3.6. Analysis of barley glycans by MALDI-TOF and LC-ESI MS 

Optimized in-solution deglycosylation and glycan analysis methods were used for analysis 

of glycans from barley grain and malt glycoprotein fraction from HPLC ConA affinity 

column. Since these fractions contained several different proteins, it was more appropriate 

to separate the complex mixture before the deglycosylation process. Nevertheless, 

the well-established SDS-PAGE protein separation method used for analysis of these proteins 

could not be used in this study due to the negative results from the in-gel deglycosylation 

optimization method (chapter 5.6.3.1). Therefore, proteins should be separated still dissolved 

in a solution, for example by HPLC. We have chosen the SEC chromatography because 

proteins are separated according to their masses using this method similarly to SDS-PAGE. 

Barley grain and malt proteins were separated on eight fractions. Separated proteins were 

deglycosylated and glycans were purified and analyzed using the optimized methods. Samples 

were analyzed using both MALDI-TOF/TOF MS and LC-ESI MS. 
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Unfortunately, although some weak signals were detected in MALDI-TOF MS spectra 

of investigated grain and malt samples, no glycans were identified. The reason may be 

the small quantity of glycoproteins obtained after ConA HPLC separation and SEC HPLC 

fractionation. Another reason can be the specificity of used PNGase F enzyme. Although this 

enzyme exhibits specific activity for both high-mannose type and complex type N-glycans, 

it does not release N-glycans containing α(1-3) fucose residue linked to the proximal 

GlcNAc.
3
 These types of glycans were found in some barley glycoproteins, that are associated 

with the allergy, namely the α-amylase inhibitors BMAI and CMb.
45 

It is possible, that these 

core fucosylated N-glycans are present also in other barley glycoproteins.  

Therefore in our next protein N-glycosylation studies we focused on the enrichment and 

analysis of glycopeptides, that allows the simultaneously analysis of both the glycan and 

peptide moiety and the distinction between core fucosylated and non-fucosylated N-glycans. 

5.6.4. Enrichment and analysis of glycopeptides 

The analysis of glycopeptides provides information about both peptide and glycan moiety. 

However, the analysis of glycopeptides in the complex mixture is almost impossible because 

glycopeptides hardly ionize in the presence of non-glycosylated peptides.
84,85

 Therefore, 

protein N-glycosylation was studied after glycopeptides enrichment. First of all, 

the glycopeptides enrichment, purification and analysis were optimized using two standard 

glycoproteins. Then, barley glycopeptides were enriched using the optimized method from the 

various samples of grain and malt and the preliminary results are shown in the last chapter (0).  

5.6.4.1. Optimization of glycopeptides enrichment and analysis 

For this purpose, two standard glycoproteins were used. RNase B has already been used for 

glycan analysis and contains only high-mannose type glycans. The second used glycoprotein, 

horseradish peroxidase (HRP), is a plant glycoprotein that contains complex type glycans. 

It was found, that HRP glycans contain xylose and core 1,3-fucose, which had not been found 

in mammalian glycoproteins and are associated with the allergenicity of plant proteins.
46

 

Whereas the sequence of RNase B contains only one N-glycosylation site, the HRP sequence 

contains nine possible N-glycosylation sites. Amino acid sequences of these two standard 

glycoproteins including labelled N-glycosylation sites are shown in Figure 44. 

As in the previous study of glycans (chapter 5.6.3.6), our first aim was to follow the study 

of barley glycoproteins separated by ConA HPLC and SDS-PAGE and enrich 

the glycopeptides from these samples of already known barley glycoproteins (chapters 5.6.1 

and 5.6.2). Therefore, the optimization of glycopeptides enrichment using standard 

glycoproteins was performed after SDS-PAGE separation and in-gel digestion. Unfortunately, 

no glycosylated peptides were detected even after using of optimized procedure. 

Glycopeptides are probably tightly crosslinked in the gel and were not extracted from the gel. 

Following this, only in-solution protein digestion was used for the analysis of glycopeptides. 

For the glycopeptides enrichment optimization, both trypsin and chymotrypsin proteolytic 

enzymes were used. 
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Figure 44: Amino acid sequences of a) RNase B); and b) horseradish peroxidase (HRP). 

Possible N-glycosylation sites are highlighted in red boxes. 

Several glycopeptide analysis and enrichment strategies were tried, namely the 

MALDI-TOF/TOF analysis using glycopeptide-suitable matrices, and capture 

of glycopeptides on cellulose, HILIC or carbon resin. Nevertheless, all these methods did not 

bring satisfying results. For example, the cellulose column affinity chromatography was 

performed according to Kubota et al.
112

 Cellulose TopTip was prepared using a GELoader tip 

filled with approximately 1 mg of cellulose. After MALDI-TOF MS analysis of the bound 

fraction it was found, that cellulose retains also non-glycosylated peptides, and among them, 

no glycosylated peptides were detected. Therefore, this application seems to be unsuitable for 

glycopeptides enrichment. The reason of failure could be using of different cellulose tips than 

Kubota et al. used. 

The best results were obtained after glycopeptides enrichment on ConA lectin TopTips. 

Therefore, further analyzes were focused on the optimization of this enrichment strategy and 

the analysis of ConA captured glycopeptides. In contrast to C18 or carbon tips that are 

connected to pipette and thereby the sample is aspirated and expelled, sample is added using 

pipette on the ConA TopTip and then pushed through with syringe. 

The glycopeptides enrichment was performed according to the manufacturer manual. ConA 

lectin captures glycopeptides containing mannosyl or glucosyl residues. Sample was slowly 

pushed through the tip for several times for proper glycopeptide binding. Then, unbound 

non-glycosylated peptides were washed from the resin, and glycosylated peptides were eluted 

by elution buffer containing glucose. The obtained glycopeptides are contaminated by salts 

and glucose from the elution buffer and therefore, the sample has to be purified before the 

MALDI-TOF/TOF analysis. After C18 ZipTip pipette tips purification, which was 
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successfully applied for peptide purification and is used also for glycopeptide purification
85

, 

no glycopeptides were detected. Thus, glycopeptides are probably more hydrophilic than 

non-glycosylated peptides and were not retained on the C18 resin.  

A successful purification of ConA captured glycopeptides was obtained using carbon 

Supel-Tips. After the purification, glycopeptides were analyzed by MALDI-TOF/TOF mass 

spectrometry. 

 

For the mass spectrometric analysis of standard glycopeptides, several different matrices 

were tested. DHB matrix is the most commonly used matrix for glycopeptides analysis. 

According to Yu et al.
113

, DHB matrix doped with 10 mM ammonium citrate was tested. Yu 

et al. have published that ammonium citrate improve the glycopeptide signal when added 

to DHB matrix solution, more specifically, they observed at least a 10-fold increase of ion 

intensity. The binary matrix of DHB/SA 1:1 that showed good results in study of glycans 

(chapter 5.6.3.3), was tried out as well. According to Franc et al.
114

, ferulic acid (FA) was 

tested as a matrix suitable for analysis of N-glycopeptides. FA should have best result when 

large HRP or ovalbumin tryptic glycopeptides are measured.
114 

 

Figure 45: MALDI-TOF/TOF MS/MS fragmentation spectra of the tryptic glycopeptide from 

horseradish peroxidase (precursor at m/z 3670.9) obtained using a) DHB; and b) FA 

matrices.  

DHB matrix provided the best results in MALDI-TOF MS and MS/MS analysis of standard 

N-glycopeptides. Nevertheless, this matrix formed large crystals and the spot was not 

homogeneously crystallized, and therefore, manually aiming at the crystals was necessary. 

But after recrystalization of the spot in ethanol the intensity of MS spectra decreased. 

Moreover, although the use of binary matrix DHB/SA forming small crystals brought good 
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results in analysis of glycans, poor spectra were obtained using DHB/SA matrix in analysis 

of glycopeptides. The reason may be the ability of peptides to desorb more easily from larger 

crystals than carbohydrates which are located within the inner microcrystalline region.
14

 

The ammonium citrate doped DHB matrix showed similar results as DHB matrix and 

no signal improvement was detected. FA showed weaker MS spectra than using DHB matrix 

in the case of RNase B glycopeptides; however, FA provided good results in the MS/MS 

fragmentation of large HRP glycopeptides (greater than about 3000 Da). The comparison 

between MS/MS spectra obtained using DHB and FA matrix is shown in Figure 45. The 

increase of signal intensity using FA matrix is evident. Especially when focus on the 

low-mass area, the N-acetylglucosamine (GlcNAc) oxonium ions (m/z 204 and 168), 

important for glycopeptide identification, were not detected using DHB matrix.  

DHB matrix was preferably used for further analyzes of glycopeptides. As a supplement for 

measurement of large glycopeptides, samples were spotted also with FA matrix.  

 

5.6.4.2. MALDI-TOF MS analysis of standard glycopeptides 

 Glycopeptides were analyzed by MALDI-TOF mass spectrometry and obtained MS/MS 

spectra were manually interpreted according to the literature (see chapter 2.4.1.3).
84

 

First, GlcNAc low-molecular-weight oxonium ions of m/z 204 and 186 and/or 168 were 

searched in MS/MS spectra. These oxonium ions are typical for fragmentation 

of glycopeptides in CID, and therefore, they may be considered as glycopeptides markers. 

Then, the characteristic fragment patterns for non-core-fucosylated or core-fucosylated 

N-glycopeptides (described in Figure 8) were searched. Thereby, the masses of both peptide 

and glycan moieties were determined. The structure of glycan moiety was identified 

according to glycan fragmentation signals, and the sequence of the peptide moiety was 

calculated according to the y- and b-ion fragment signals.  

Both unbound and bound fractions from ConA glycopeptides enrichment were analyzed by 

MALDI-TOF MS and compared. The MS spectra of the unbound and bound fraction 

of tryptic-digested RNase B is shown in Figure 46.  Significant differences between the 

peptide compositions in both samples were observed. Although some non-glycosylated 

peptides are still present in the bound fraction, several glycopeptides were detected. These 

glycopeptides did not occur in the unbound fraction at all. The presence of non-glycosylated 

peptides may be caused either by their incomplete washing, or non-glycosylated peptides may 

interact with glycopeptides by some specific or nonspecific forces.
85 

Figure 47 shows the zoomed MS spectra of RNase B tryptic glycopeptides including their 

identification obtained after MS/MS measuring. The glycan part of identified glycopeptides 

was composed of two GlcNAc units and five to nine mannose units. As a peptide part 

of RNase B glycopeptides, three different RNase B tryptic peptides were identified: 

the peptide with the sequence N60-K63 of 475 Da, the peptide S58-K63 (718 Da, created after 

one missed cleavage) and the peptide N60-R65 (746 Da, created after one missed cleavage). 

The last mentioned one formed the most intensive glycopeptide signal in the MS spectra 

(m/z 1962.4) and all five N-glycosylation RNase B forms joined to this peptide were detected. 
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Figure 46: MALDI-TOF MS spectra of the a) unbound; and b) bound fraction from ConA 

TopTip RNase B tryptic glycopeptides enrichment. Identified glycopeptides are highlighted 

in bold. CHCA matrix was used in the case of ConA unbound peptides and DHB matrix 

for analysis of ConA bound glycopeptides. 

 

 

Figure 47: Zoomed MALDI-TOF MS spectra of the bound fraction from ConA TopTip 

RNase B tryptic glycopeptides enrichment. Identified glycopeptides are highlighted in bold 

and their structures are shown in the spectrum. DHB was used as a matrix. 
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Figure 48: MALDI-TOF/TOF MS/MS fragmentation spectrum of the tryptic glycopeptide 

N60-R65 containing GlcNAc2Man5 N-glycan from RNase B (precursor at m/z 1962.4). 

DHB was used as a matrix. 

The example of MS/MS fragmentation spectrum of tryptic RNase B glycopeptide is shown 

in Figure 48. This 1962 Da glycopeptide corresponds to peptide N60–R65 with attached 

N-glycan composed of two GlcNAc units and five mannose units. Two GlcNAc oxonium ions 

identified in this spectrum are the markers of glycopeptide fragmentation. All y- fragment 

ions and also one b-ion resulted from the fragmentation of the peptide moiety were identified 

in the spectra. Furthermore, specific fragmentation pattern of non-core-fucosylated 

glycopeptides and the fragments of the glycan moiety were detected. In detail, 

the characteristic peak doublet with a mass difference of 17 Da is formed by the signal 

of peptide fragment and peptide fragment that arises from the cleavage of the side-chain 

amide bond of the glycosylated asparagine. The fragmentation of the glycan moiety was 

characterized by cleavage of glycosidic bonds as well as a 
0,2

X-ring fragmentation of the 

innermost GlcNAc of the chitobiose core. 

 

 

Figure 49: Zoomed MALDI-TOF MS spectra of the a) unbound; and b) bound fraction from 

ConA TopTip RNase B chymotryptic glycopeptides enrichment. Identified glycopeptides are 

highlighted in bold and their structures are shown in the spectrum.  
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RNase B was digested with chymotrypsin as well. The zoomed MS spectrum of the ConA 

unbound and bound fractions is shown in Figure 49. Significant differences between these 

two samples were observed. In the bound fraction, several glycopeptides were identified and 

the intensity of glycopeptide peaks was higher than the intensity of remaining 

non-glycosylated peptide peaks. In contrast with tryptic digest, glycopeptides containing only 

one chymotryptic peptide were detected, namely the peptide K57-L61 (617 Da) and 

corresponding glycopeptides with five to eight mannose units. In addition, also one 

glycopeptide containing non-specifically cleaved peptide S58-L61 was identified. This peptide 

was created by hydrolysis of peptide bond at the C-termini of Lys (K-SRNL), which may be 

caused by contamination of chymotrypsin by trypsin. According to chymotrypsin 

manufacturer, less than 0.07 % of trypsin may be present in chymotrypsin. 

The Figure 50 shows the MS/MS fragmentation spectrum of chymotryptic RNase B 

glycopeptide of 1833.9 Da corresponding to peptide K57-L61 with attached N-glycan 

of GlcNAc2Man5-9. All identified fragment ions are labelled in the spectrum. 

 

 

Figure 50: MALDI-TOF/TOF MS/MS fragmentation spectrum of the chymotryptic 

glycopeptide K57-L61 containing GlcNAc2Man5 N-glycan from RNase B 

(precursor at m/z 1833.9). DHB was used as a matrix. 

In the case of HRP, the identification of glycopeptides was more complicated. While 

RNase B contains only high-mannose glycans attached to one N-glycosylation site, HRP 

contains nine possible N-glycosylation sites and various complex glycans. Wuhrer et al.
115

 

published that the predominant species at all N-glycosylation sites of HRP is xylosylated, 

core-(α1-3)-fucosylated trimannosyl N-glycan structure (GlcNAc2Fuc1Man3Xyl1). Moreover, 

they have revealed a unusual N-glycan structure of Fuc(α1-3)GlcNAc that might arise from 

N-glycan processing by the chitobiose core endoglycosidase cleaving of core-(α1-3)-

fucosylated HRP N-glycans.
115

  

The ConA enrichment of HRP glycopeptides was successful and several glycopeptides 

were identified. The CID fragmentation of many observed glycopeptides indicated the 

attached N-glycan moiety composition of GlcNAc2Fuc1Man3Xyl1. The examples MS/MS 

spectra of chymotryptic and tryptic glycopeptides are shown in Figures 51 and 52, 

respectively. The most prominent signals from the characteristic fragment pattern for 

core-fucosylated N-glycopeptides belonged to peptide after cleavage of side-chain amide 

bond of the glycosylated asparagine, and to peptide with attached fucosylated GlcNAc. 
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Figure 51: MALDI-TOF/TOF MS/MS fragmentation spectrum of the chymotryptic 

glycopeptide V293-F304 containing GlcNAc2Fuc1Man3Xyl1 N-glycan from horseradish 

peroxidase (precursor at m/z 2575.3). DHB was used as a matrix.  

 

 

Figure 52: MALDI-TOF/TOF MS/MS fragmentation spectrum of the tryptic glycopeptide 

G272-R294 containing GlcNAc2Fuc1Man3Xyl1 N-glycan from horseradish peroxidase 

(precursor at m/z 3670.9). Ferulic acid was used as a matrix.  

 

In this study, the enrichment of glycopeptides, subsequent glycopeptide purification and 

mass spectrometric analysis were successfully optimized. It was found, how certain types 

of glycopeptides fragment by CID in MALDI-TOF/TOF MS/MS analysis. Moreover, 

the knowledge about manual evaluation of glycopeptide mass spectra were acquired. 

Optimized methods and acquired experiences were utilized in subsequent investigation 

of barley grain and malt glycopeptides.   
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5.6.4.3. MALDI-TOF MS analysis of barley glycopeptides 

After the glycopeptide ConA TopTip enrichment optimization using standard 

glycoproteins, this method was applied on barley grain and malt water-soluble proteins. First, 

the glycoprotein fraction was enriched from the aqueous extract of barley grain using the 

ConA HPLC column. Obtained glycoprotein sample obtained from a total of seven collections 

was dialyzed against deionized water and freeze dried. Subsequently, purified glycoproteins 

were digested with chymotrypsin and used for glycopeptides enrichment.  

Although chymotrypsin is less specific than trypsin, and moreover, during study 

of glycopeptides standards also its minor tryptic activity was found, this enzyme was chosen 

as more suitable for the study of barley glycopeptides due to the assumption of detection more 

glycopeptides in optimum mass range of MALDI-TOF MS analysis. When some potential 

glycoproteins identified in barley grain or malt samples are theoretically digested with 

trypsin
107

, only a few or no peptides containing the potential N-glycosylation site and smaller 

than 3 kDa are created.  

After carbon purification, MALDI-TOF MS analysis of both bound and unbound ConA 

TopTip fractions was performed. CHCA, DHB and FA were used as MALDI matrices. 

Unfortunately, no glycopeptides were detected in the bound fraction. The cause was probably 

a small concentration of glycoproteins in the sample. In the MS spectrum, only the MS peaks 

ladder differencing of 162 Da was detected. This ladder indicated the presence of some 

oligosaccharides that probably originates from the ConA washing buffer. When some 

glycopeptides were present in the other samples, the oligosaccharide ladder was not detected. 

Consequently for glycopeptide quantity increase, the entire aqueous extracts of grain and 

malt were used for enrichment of glycopeptides. One sample contained 0.5 mg of grain 

or malt extract. Samples were digested with chymotrypsin and the ConA TopTip 

glycopeptides enrichment and subsequent carbon purification was performed. Both bound and 

unbound fractions were analyzed by MALDI-TOF MS. When the MS spectra of the bound 

and unbound fractions were compared, the intensity decreases or disappearances of some 

signals, and vice versa, the appearances of some signals were observed in the spectrum of the 

ConA bound fraction. The example of comparison of the unbound and bound fraction 

of barley malt including the indication of possible glycopeptides is shown in Figure 53.  

After MS/MS fragmentation analysis of the bound fraction, several possible glycopeptides 

containing the glycopeptide markers in the MS/MS spectrum (GlcNAc oxonium ions of 

m/z 168, m/z 204 and in some cases also ion of m/z 186) were found. Altogether, six potential 

glycopeptides were found in the grain sample and nine in the malt sample. Nevertheless, 

the fragmentation was not optimal in all cases and the characteristic glycopeptides fragment 

pattern was not detected in all spectra. In addition, obtained glycopeptides could come from 

a wide range of glycoproteins that are present in the complex grain or malt aqueous extract. 

Therefore, the identification of both peptide and glycan parts of obtained potential 

glycopeptides was very difficult.  
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Figure 53: Zoomed MALDI-TOF MS spectra of the a) unbound; and b) bound fraction from 

ConA TopTip enrichment of barley malt chymotryptic glycopeptides. Identified potential 

glycopeptides are highlighted in bold. CHCA matrix was used in the case of ConA unbound 

peptides and DHB matrix for analysis of ConA bound glycopeptides. 

The Figures 54 and 55 show the MALDI-TOF/TOF MS/MS spectra of barley grain 

glycopeptide of m/z 2877 and m/z 2925, respectively. Identified fragments are listed in the 

spectra. According to finding of characteristic GlcNAc fragmentation pattern ions in the MS 

spectra it was deduced that both these glycopeptides probably contained high-mannose 

glycans GlcNAc2Man6. Consequently, the masses of peptide moiety were approximately 

1498 Da (from glycopeptide of 2877 Da) and 1546 Da (from glycopeptide of 2925 Da). 

These peptides differ of about 48 Da, which may represent the oxidation of Cys residue. 

However, the y- and b- fragments of the peptide backbone detected in the spectra showed 

no similarity, which suggested a different origin of these glycopeptides. These values were 

manually compared with masses of peptides (containing potential N-glycosylated Asn) that 

were obtained after theoretical chymotrypsin cleavage
107

 of proteins identified after ConA 

HPLC enrichment in our previous study (chapters 5.6.1 and 5.6.2). Moreover, modified 

MS/MS data were also submitted to the Mascot database searching. Nevertheless, the peptide 

moiety was not identified by any of these methods.  

 

 

Figure 54: MALDI-TOF/TOF MS/MS fragmentation spectrum of the chymotryptic 

glycopeptide from barley malt (precursor at m/z 2877). DHB was used as a matrix. 
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Figure 55: MALDI-TOF/TOF MS/MS fragmentation spectrum of the chymotryptic 

glycopeptide from barley malt (precursor at m/z 2925). DHB was used as a matrix. 

The glycopeptides enrichment method was successfully applied to both standard and real 

barley samples. However, for improvement of glycopeptide analysis and for facilitation 

of their identification, the separation of proteins before the proteolytic digestion and 

glycopeptides enrichment seemed to be necessary. The purification of one or a small group 

of proteins would be optimal.  
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6. CONCLUSIONS 

The barley grain proteins are significantly changed during the malting and brewing process. 

The aim of this doctoral thesis was to contribute to the understanding of these protein changes 

and to perform various proteomic studies of barley grain and malt proteins. A special attention 

was paid to post-translational modifications of barley proteins, namely non-enzymatically 

forming glycations and enzymatically forming N-glycosylations of barley proteins. 

 

Barley water-soluble proteins in the individual steps of the malting and brewing process 

were successfully identified. During the barley germination, several proteins are formed. 

For example α-amylase, β-D-xylosidase, 26 kDa endochitinase 1 or chitinase, were identified 

in the barley malt sample and were not detected in the grain sample. Therefore, either 

undetectable amount is present in the barley grain, or these proteins are starting to create 

during malting. The first signs of α-amylase appeared on Coomassie stained 1D gel from the 

second day of malting. Moreover, the amount of some proteins seemed to decrease as well, 

for example the α-amylase/subtilisin inhibitors. Moreover, chymotrypsin inhibitors were 

detected in the grain sample only. 

During mashing, the protein amount is significantly decreasing. In the sweet wort sample 

α-amylase, β-D-xylosidase, barperm and thaumatin-like proteins were still identified; 

however, these proteins were precipitated during brewing and were not detected in the wort 

and green beer samples. In the wort and green beer sample, only protein Z and low-molecular 

weight proteins (protease/α-amylase inhibitors and ns-LTP) were identified. 

To achieve mentioned protein identification, the separation of the complex protein mixture 

was necessary. Several separation techniques were successfully used, including 1D and 2D 

gel electrophoresis and reversed phase C18 and SEC HPLC.  

SDS-PAGE was primarily used for the separation of barley proteins and together with 

subsequent in-gel protease digestion and MALDI-TOF MS analysis represented the most 

appropriate technique for the rapid and efficient identification of barley proteins. Moreover, 

it was a suitable method for successful monitoring of changes in the protein profile during 

individual steps of the malting and brewing process. 

Two-dimensional electrophoresis allowed more effective separation of individual proteins 

present in barley grain as well as the approximate determination of the isoelectric points 

of barley proteins. Some additional proteins were identified in comparison with 1D GE 

(SDS-PAGE).  

The reversed phase C18 HPLC separation represents a suitable method for rapid barley 

protein separation and monitoring of protein profile changes during malting and brewing. 

Because of the rapidity and simplicity of this method, it was used also for the comparison 

of individual barley varieties. This method also showed good long-term reproducibility. 

The comparison of C18 HPLC grain or malt profiles could possibly be used for barley 

varieties discrimination.  

SEC HPLC separation was successfully used for separation and analysis of barley and malt 

proteins. The differences between grain and malt protein profiles were studied as well. 

The peak corresponding to β-amylase, β-glucosidase and protein Z showed significant 

increase during malting, and therefore, this fraction was used for detailed relative 

quantification analysis using the iTRAQ method. It was found that the amount of β-amylase 

increased the most in comparison to the two others proteins. If the malt protein content 
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is expressed as 100 %, approximately 60 % of malt β-amylase is present in grain sample. 

Accordingly, approximately 80 % of malt β-glucosidase and 83 % of malt protein Z are 

present in grain.  

 

The low-molecular weight proteins and their changes during malting and mashing were 

successfully analyzed using the linear mode of MALDI-TOF MS. Between the greatest 

advantages of this method belong its rapidity as well as the rapid estimation of the level 

of glycations of barley low-molecular weight proteins. C-terminal 363 – 399 fragment of 

protein Z, ns-LTP1, ns-LTP1b (LTP1 with bound lipid-like molecule) and ns-LTP2 were 

among studied proteins. Protein Z fragment was formed during malting and resulted in the 

most intensive peak of the malt MS spectrum. LTP2 and LTP1b were detected in all three 

investigated samples of grain, malt and sweet wort. LTP1 was not detected in the grain and 

malt samples; however, it was more intensive than LTP1b in the sweet wort sample. It follows 

that the lipid-protein bond was breaking up during mashing.  

All mentioned low-molecular weight proteins were non-enzymatically glycated during the 

malting process. The degree of glycation within individual steps of malting was successfully 

monitored. LTP1b and LTP2 glycated forms were detected from the 3
rd

 day of the malting 

and these proteins were gradually glycated with up to three and two hexose units, 

respectively. Protein Z fragment was detected from the 3
rd

 day of the malting process and its 

glycation with one hexose unit was slightly detected from the 4
th

 day of the malting process. 

The glycation of protein Z was analyzed by MALDI-TOF MS after SDS-PAGE separation 

and chymotrypsin digestion as well. The glycation of Lys276 residue by one hexose unit was 

found.   

 

In addition to water-soluble proteins, barley prolamins (hordeins) were studied as well. 

SDS-PAGE separation of alcohol-soluble extracts allowed successful identification 

of hordeins and the monitoring of their changes during the whole malting process. The 

content of hordeins was slightly decreased during malting and the most significant decrease 

was observed in the case of D hordein. For obtaining of more detailed view on the changes of 

C hordein during malting, relative quantification using iTRAQ method was performed. It was 

found that the amount of C hordein was significantly decreased and the amount of C hordein 

in malt represented 35 % of the initial amount in barley grain.  

 

Moreover, the next part of the thesis was focused on study of enzymatically formed 

N-glycosylations of water-soluble proteins. ConA affinity chromatography was used for 

glycoprotein enrichment, and subsequently, captured proteins were separated by SDS-PAGE 

and analyzed by MALDI-TOF MS. Two ConA columns were used, a manually filled column 

with ConA-agarose and the monolithic ConA HPLC column. Using both types of columns, 

several potential glycoproteins were identified in barley grain as well as malt. Nevertheless, 

ConA was bleeding from the manually filled column, which made the analysis more difficult. 

Therefore, it was replaced by monolithic HPLC column with firmly bound stationary phase in 

the next studies. Thereby, faster, semi-automated and more reproducible separation was 

achieved. Certain proteins identified in the ConA bound fractions are also proven 

glycoproteins according to the database. However, several proteins, especially in barley grain, 

are still named ―predicted proteins‖. This implies that this area of barley minor glycoproteins 

is still little studied and these studies are still a current issue.  



108 

 

In the last part of the thesis, the optimization of the oligosaccharide moiety of glycoproteins 

was performed. By several studies it was found that the analysis of the glycan part using 

polyacrylamide gel separated proteins is complicated. Glycans/glycopeptides are probably 

tightly crosslinked in the gel and were not extracted from the gel. Therefore, the sample had 

to remain in the solution. The glycan part of standard glycoproteins was studied by two ways: 

by analysis of glycan after protein deglycosylation, and by analysis of glycopeptides after 

their enrichment. The second approach seemed to be more promising for barley proteins, 

because allows the simultaneous analysis of both the peptide and glycan part of glycoproteins. 

After ConA glycopeptides enrichment of barley grain and malt chymotryptic digests, some 

glycopeptides were detected. Nevertheless, their identification was very difficult. 

For improvement of glycopeptide analysis and for facilitation of their identification, the 

separation of proteins before the proteolytic digestion seemed to be necessary.  

Used method of glycopeptides enrichment will be applied in further studies of glycosylated 

proteins in various cereals and cereal food products focused on glycoproteins associated with 

allergenicity. Moreover, the glycopeptide or glycoprotein enrichment using more types of 

lectin or further optimizations of deglycosylations and glycan labelling for the improvement 

of MS spectra could be performed in future studies.  
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8. ABBREVIATIONS 

AC  affinity chromatography 

ACN  acetonitrile 

AGE advanced glycosylation end product 

BASI bifunctional α-amylase/subtilisin inhibitor 

BDAI barley dimeric α-amylase/trypsin inhibitor 

CHCA α-cyano-4-hydroxycinnamic acid 

CID  collision induced dissociation 

ConA concanavalin A  

Da  Daltons  

DAC   diammonium citrate 

DHAP   2,6-dihydroxyacetophenone 

DHB 2,5-dihydoxybenzoic acid 

DTT  dithiothreitol 

Endo H endoglycosidase H 

ESI  electrospray ionization 

ER  endoplasmic reticulum 

FA   ferulic acid 

GE  gel electrophoresis 

Glc  glucose  

GlcNAc N-acetyl-D-glucosamine 

GPI  glycosylphosphatidylinositol 

HABA  2-(4-hydroxyphenyl)azobenzoic acid 

HPLC high performance liquid chromatography 

HRP  horseradish peroxidase 

ICAT
TM

  isotope coded affinity tags 

IEF  isoelectric focusing 

IMAC immobilized metal-affinity chromatography 

IPG   immobilized pH gradient 

iTRAQ  isobaric tags for relative and absolute quantification 

LC  liquid chromatography 

MALDI matrix-assisted laser desorption/ionization 

Man  mannose 

ME  mercaptoethanol 

MS  mass spectrometry  

ns-LTP non-specific lipid transfer protein 

PAGE polyacrylamide gel electrophoresis  

pI  isoelectric point  

PI  protease inhibitor 

PMF peptide mass fingerprinting 

PNGase peptide-N-glycosidase 

PTM post-translational modification 

RIBM Czech Research Institute of Brewing and Malting, PLC 

RNase B  ribonuclease B 

PR  pathogenesis related protein 
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RP  reversed phase  

SA  sinapinic acid 

SDS  sodium dodecylsulfate 

SEC  size exclusion chromatography 

SILAC  stable isotope labelling with amino acids in cell culture 

TEMED  tetramethylethylenediamine 

TFA  trifluoroacetic acid 

THAP   2,4,6-trihydroxyacetophenone 

TOF  time-of-flight  

UV  ultraviolet  
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10. APPENDIX 

10.1.  Barley proteins identified after tryptic digestion 

The summary of barley proteins identified after tryptic digestion in the entire doctoral thesis, 

including corresponding identified peptides and their sequences. 

 

protein name 
NCBInr  

entry 

UniProtKB 

entry 

mass 

[Da] 

[M + H]+ 

(observed) 
peptide sequence 

1,3-beta-glucan endohydrolase GII gi|809429  P15737 32.4 

1424.76 IYFADGQALSALR 

1618.84 IGVCYGVIGNNLPSR 

2077.01 VVVSESGWPSAGGFAASAGNAR 
2138.06 DNPGSISLNYATFQPGTTVR 

2147.10 YIAAGNEVQGGATQSILPAMR 

2200.19 LLASTGAPLLANVYPYFAYR 
2355.21 VSTSIRFDEVANSFPPSAGVFK 

26 kDa endochitinase 1 gi|2506281 P11955 34.4 
1743.86 GPIQLSHNYNYGPAGR 

1756.83 GFYTYDAFVAAASAFR 

chain A, the refined crystal structure of 

an endochitinase 

26 kDa endochitinase 2 

gi|157834680 

 

gi|116316 

P23951 28.2 

1743.84 GPIQLSHNYNYGPAGR 

2039.86 GASSDYCTPSAQWPCAPGK 

2195.95 GASSDYCTPSAQWPCAPGKR 
2497.21 VPGFGVITNIINGGIECGHGQDSR 

2582.12 YCDILGVGYGNNLDCYSQRPFA 

2958.39 GFYTYDAFVAAAAAFPGFGTTGSADAQKR 

aldose reductase gi|113595 P23901 35.8 

981.51 TAITEAGYR 

1259.63 IWCTNLAPER 

1439.75 SGHAMPAVGLGTWR 
1455.74 SGHAMPAVGLGTWR + Oxidation (M) 

1682.88 HGIHVTAYSPLGSSEK 

1959.99 VLTGEELFVNKTHGPYR 

2244.59 DLQLDYIDLYHIHWPFR 

alpha-amylase 
gi|166985 

gi|229610883 

Q03651 

C3W8M9 
47.7 

1052.48 TDVGFDGWR 

1121.64 AIADIVINHR 
1284.60 LDWGPHMICR 

1455.79 GILNVAVEGELWR 

1555.72 GIYCIFEGGTPDAR 
2645.22 AVTFVDNHDTGSTQHMWPFPSDR 

alpha-amylase 1 gi|166979  Q40016 48.2 

1052.48 TDVGFDGWR 

1121.64 AIADIVINHR 
1455.79 GILNVAVEGELWR 

1555.72 GIYCIFEGGTPDAR 

3136.60 VDDIAAAGITHVWLPPASQSVAEQGYMPGR 

alpha-amylase inhibitor BDAI-1 gi|123970 P13691 16.4 

1941.07 DCCQEVANISNEWCR 
2122.05 SVYAALGVGGGPEEVFPGCQK 

2175.52 LLVAGVPALCNVPIPNEAAGTR 
2232.24 LLVAGVPALCNVPIPNEAAGTR 

alpha-amylase inhibitor BMAI-1 gi|2506771 P16968 16.4 

1206.62 ATVAEVFPGCR 

2081.92 SQCAGGQVVESIQKDCCR 

2107.98 QIAAIGDEWCICGALGSMR 
2218.11 ELGVALADDKATVAEVFPGCR 

alpha-amylase type B isozyme 

chain A, Amy2BASI PROTEIN-protein 

complex 
alpha-amylase 

gi|2851583 

gi|4699831 

 
gi|229610885  

P04063 

P04063 

 
C3W8N0 

47.5 

1036.49 ADIGFDGWR 

1121.64 AIADIVINHR 
1284.60 LDWGPHMICR 

1455.79 GILNVAVEGELWR 

1555.72 GIYCIFEGGTPDAR 
2645.22 AVTFVDNHDTGSTQHMWPFPSDR 

3136.60 VDDIAAAGITHVWLPPASQSVAEQGYMPGR 

3287.65 SEPSFAVAEIWTSLAYGGDGKPNLNQDQHR 

alpha-amylase/trypsin inhibitor CMa gi|585289 P28041 15.5 

1068.54 SHPDWSVLK 

1296.67 DLPGCPKEPQR 

1702.68 CCQELDEAPQHCR 

alpha-amylase/trypsin inhibitor CMb gi|585290 P32936 16.5 

1023.50 EVQMDFVR 

1167.65 DYVEQQACR 

1799.87 SRPDQSGLMELPGCPR 
1815.86 SRPDQSGLMELPGCPR + Oxidation (M) 

1861.82 QQCCGELANIPQQCR 

d      
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protein name 
NCBInr  

entry 

UniProtKB 

entry 

mass 

[Da] 

[M + H]+ 

(observed) 
peptide sequence 

alpha-amylase/trypsin inhibitor CMd 
CMd preprotein (AA -14 to 146) 

gi|585291 
gi|758343 

P11643 18.5 

1813.86 DYVLQQTCAVFTPGSK 

1876.01 LLVAPGQCNLATIHNVR 

1967.87 LYCCQELAEIPQQCR 
3387.66 YFMALPVPSQPVDPSTGNVGQSGLMDLPGCPR 

3403.68 
YFMALPVPSQPVDPSTGNVGQSGLMDLPGCPR + 

Oxidation (M) 

barwin 

chain A, Three-Dimensional Structure 
In Solution Of Barwin 

gi|114832 

gi|159162134 
P28814 13.7 

1299.71 VTNPATGAQITAR 

1439.66 YGWTAFCGPAGPR 

1654.79 SKYGWTAFCGPAGPR 
2267.07 IVDQCANGGLDLDWDTVFTK 

2826.31 IDTNGIGYQQGHLNVNYQFVDCRD 

basic pathogenesis-related protein PR5 
Barperm1 

thaumatin-like protein TLP6 

thaumatin-like protein TLP7 

gi|2344818 
gi|2454602 

gi|14164979 

gi|14164981 

O23997 
O22462 

Q946Z0 

Q946Y9 

25.2 

1057.44 TGCTFDGSGR 
1135.43 FGGDTYCCR 

1913.35 LDPGQSWALNMPAGTAGAR 

2062.70 VSGQQPTTLAEYTLGQGANK 

beta-amylase gi|10953877 Q9FUK6 59.6 

838.45 MHANLPR 

1016.58 LFGFTYLR 

1189.63 ISGIHWWYK 

1299.58 ASINFTCAEMR 
1326.67 YDPTAYNTILR 

1370.68 DPYVDPMAPLPR 

1386.69 DPYVDPMAPLPR + Oxidation (M) 
1442.71 EGLNVACENALPR 

1515.81 FFLAWYSNNLIK 
1669.74 SAVQMYADYMTSFR 

1685.71 SAVQMYADYMTSFR + Oxidation (M) 

1724.84 LSNQLVEGQNYANFK 
1738.85 NARPHGINQSGPPEHK 

1811.93 SGPEISIEMILQAAQPK 

2013.96 VPSHAAELTAGYYNLHDR 
2025.84 DVGTCDPDIFYTDGHGTR 

2086.05 NIEYLTLGVDNQPLFHGR 

2190.09 MHANLPRDPYVDPMAPLPR 

2251.17 GNYVQVYVMLPLDAVSVNNR 

2733.26 DSEQSSQAMSAPEELVQQVLSAGWR 

2749.34 
DSEQSSQAMSAPEELVQQVLSAGWR + Oxidation 

(M) 

2841.28 AAAAAVGHPEWEFPNDVGQYNDTPER 

3007.54 LQAIMSFHQCGGNVGDAVNIPIPQWVR 

beta-D-xylosidase gi|18025342 Q8W011 84.4 

825.51 YAAVFVR 

960.51 LGLFDGNPK 

1003.54 LPVTWYPK 
1043.60 IGQVIGTEAR 

1251.63 EHQDLALQAAR 

1423.68 HFTAYDLENWK 
2467.25 GVYNNGQAEGLTFWAPNINVFR 

2490.32 AATSFPQVILTAASFNPHLWYR 

3062.65 IGAIVWAGYPGQAGGIAIAQVLFGDHNPGGR 

beta-glucosidase gi|804656 Q40025 57.7 

882.46 FSISWSR 
973.45 NMGFDAYR 

1078.54 LPGFSADESR 

1210.59 NWFTFNEPR 

1356.62 VNQEGVDYYNR 

1437.74 VKNWFTFNEPR 
1571.86 FGIVYVDFNTLKR 

1617.83 IVGNRLPGFSADESR 

1637.78 IVGAFADYAEFCFK 
1643.83 VVAALGYDNGFHAPGR 

2172.00 IFPDGTGKVNQEGVDYYNR 

2233.20 TEPYIVTHNIILSHAAAVQR 
2362.11 QGFPAGFVFGTAASAYQVEGMAR 

beta-glucosidase [Sofia, Peptide Partial, 

41 aa, segment 1 of 6] 
gi|544867 not mapped 4.2 

1694.79 DGPNPNPEIGNTGGLSR 

2362.11 QGFPAGFVFGTAASAYQVEGMAR 

bifunctional alpha-amylase/subtilisin 
inhibitor 

alpha-amylase/subtilisin inhibitor 

amylase subtilisin inhibitor alpha 

chain C, Amy2BASI PROTEIN-protein 

complex from barley seed 

gi|18916 

 
gi|123974 

gi|225172 

gi|4699833 

F2E8J4 

 
not mapped 

not mapped 

P07596 

22.5 

1182.53 YSGAEVHEYK 
1318.64 AHGGGLTMAPGHGR 

1334.63 AHGGGLTMAPGHGR + Oxidation (M) 

1356.64 ADANYYVLSANR 
1529.86 ITPYGVAPSDKIIR 

1546.83 HVITGPVKDPSPSGR 

1843.77 LMSCGDWCQDLGVFR 
2307.03 HCPLFVSQDPNGQHDGFPVR 

2409.07 AYTTCLQSTEWHIDSELAAGR 

BTI-CMe2.1  gi|6634471 P01086 16.8 1544.77 TYVVSQICHQGPR 
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protein name 
NCBInr  

entry 

UniProtKB 

entry 

mass 

[Da] 

[M + H]+ 

(observed) 
peptide sequence 

CMd3 protein  

CMd subunit of tetrameric alpha-

amylase inhibitor 

gi|2264392 
gi|2266660 

O24000 
not mapped 

18.5 

1876.03 LLVAPGQCNLATIHNVR 

1966.87 LYCCQELAKIPQQCR 

3387.70 YFMALPVPSQPVDPSTGNVGQSGLMDLPGCPR 

cold-regulated protein gi|10799810 Q9FSI8 17.6 

1544.13 SLALVVQDIDADER 

1714.24 DISPPLEWYGVPGGAR 

1842.35 KDISPPLEWYGVPGGAR 

cytosolic glutathione reductase gi|157362219 A8CCK8 53.1 2152.66 VVTDKGDEFIADVVLFATGR 

dehydrin gi|6017948 Q9ZTR8 23.4 2226.47 VDEYGNPVPPVDQYGNPIPR 

endosperm-specific beta-amylase 1 

beta-amylase 1 

beta-amylase 

gi|29134857 

gi|38349539 

gi|10953875 

Q84T19 

Q6SNP7 

Q9FUK7 

59.6 

1016.56 LFGFTYLR 

1326.67 YDPTAYNTILR 
1752.89 LSNQLVEGQNYVNFK 

2086.07 NIEYLTLGVDNQPLFHGR 

ent-kaurene synthase-like protein 2 gi|49065964 Q673F8 23.9 1286.70 LQKPIDTCRR 

fructose-bisphosphate aldolase gi|226316443 C1J960 38.7 

1338.69 KPWNLSFSFGR 

2069.06 IGATEPSQLSIDQNAQGLAR 

2381.17 GTIELAGTNGETTTQGFDDLGKR 

germin B 
germin F 

germin D 

gi|9837113 
gi|9837115 

gi|9837117 

Q9FYY4 
Q9FYY3 

Q9FYY2 

24.6 1786.07 IDYGPLGVNTPHIHPR 

glucose and ribitol dehydrogenase 

homolog 
gi|7431022  F2CSK4 31.9 

834.51 GAIVAFTR 
1237.64 VVEEVANAHGGR 

1483.64 ALSGDLGYEENCR 

glyceraldehyde-3-phosphate 
dehydrogenase 

gi|126467754 A3RHT3 25.1 
1498.66 VPTVDVSVVDLTVR 
1662.75 TLLFGEKPVTVFGVR 

glyceraldehyde-3-phosphate 

dehydrogenase 1, cytosolic 
gi|120680 P26517 36.5 

1142.54 YDTVHGHWK 

1498.84 VPTVDVSVVDLTVR 
1662.95 TLLFGEKPVTVFGVR 

1788.79 LVSWYDNEWGYSNR 

2189.01 GIMGYVEEDLVSTDFVGDSR 

glyceraldehyde-3-phosphate 

dehydrogenase 2, cytosolic 
gi|120668 P08477 33.2 

1133.54 YDTVHGQWK 

1498.84 VPTVDVSVVDLTVR 

1775.80 LVSWYDNEWGYSTR 
2186.02 GILGYVDEDLVSTDFQGDSR 

grain softness protein gi|54661662 Q5ITH7 18.3 1840.17 SCEEVQDQCCQQLR 

chain C, Amy2BASI PROTEIN-Protein 

Complex From Barley Seed 

amylase subtilisin inhibitor alpha 
thioredoxin H2 

alpha-amylase/subtilisin inhibitor 

(BASI) 

gi|4699833 

gi|225172 
gi|119390312 

gi|123974 

P07596 

not mapped 

P07596 

22.2 

1182.53 YSGAEVHEYK 

1318.63 AHGGGLTMAPGHGR 
1334.61 AHGGGLTMAPGHGR + Oxidation (M) 

1356.63 ADANYYVLSANR 

1529.86 ITPYGVAPSDKIIR 
1546.83 HVITGPVKDPSPSGR 

1655.77 ADPPPVHDTDGHELR 

1843.78 LMSCGDWCQDLGVFR 
1859.78 LMSCGDWCQDLGVFR + Oxidation (M) 

2307.05 HCPLFVSQDPNGQHDGFPVR 

2409.08 AYTTCLQSTEWHIDSELAAGR 
2565.17 AYTTCLQSTEWHIDSELAAGRR 

2993.39 ADPPPVHDTDGHELRADANYYVLSANR 

chitinase  

chitinase II 

gi|563489 
gi|9501334 

gi|215512228 

Q43765 
Q9LEH7 

D2CVR3 

26.6 
1011.41 ATSPPYYGR 
1689.86 GPIQLTGQSNYDLAGR 

1909.92 ELAAFFGQTSHETTGGTR 

late embryogenesis abundant protein 
B19.1A 

gi|547817 Q05190 10.0 
1315.93 SLEAQQNLAEGR 
1501.92 EQMGQEGYSEMGR 

low-molecular-weight glutenin subunit 

group 3 type II [Triticum aestivum] 

gi|17425184 

 
Q8W3W6 27.2 

1568.63 TTTRVPFGVGTGVGGY 

1677.66 TLPTMCNVNVPLYR 
1693.84 TLPTMCNVNVPLYR + Oxidation (M) 

2059.80 VFLQQQCSPVAMPQSLAR 

2076.04 VFLQQQCSPVAMPQSLAR + Oxidation (M) 

LTP 1 

Chain A, Non-Specific Lipid Transfer 

Protein 1 
Non-specific lipid-transfer protein 1 

Lipid Transfer Protein Complexed With 

Palmitate 

gi|19039 
gi|47168353 

gi|128376 

gi|157830246 
gi|326533572  

P07597 
 

 

 
F2ED95 

12.3 

1327.60 DLHNQAQSSGDR 

1662.87 GIHNLNLNNAASIPSK 

2009.86 CNVNVPYTISPDIDCSR 
2331.02 DLHNQAQSSGDRQTVCNCLK 

2524.08 MKPCLTYVQGGPGPSGECCNGVR 

malate dehydrogenase   gi|326490940 F2D4W6 35.9 

2000.10 VLVTGAAGQIGYALVPMIAR 

2390.13 ELVQDDEWLNGEFIATVQQR 

2603.27 GVVATTDPVEACTGVNVAVMVGGFPR 

pathogenesis-related protein 4 gi|1808651 P93180 15.7 1299.70 VTNPATGAQITAR 

pathogenesis-related protein PRB1-2 

Pathogenesis-related protein PRB1-3 

Pathogenesis-related protein 1 

gi|548588 

gi|548589 

gi|548592 

P35792 

 

Q05968 

17.7 

1355.66 GVFITCNYEPR 

1404.70 VCGHYTQVVWR 

1423.72 LQAFAQNYANQR 

D      
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protein name 
NCBInr  

entry 

UniProtKB 

entry 

mass 

[Da] 

[M + H]+ 

(observed) 
peptide sequence 

peroxidase BP 1 

chain A, crystal structure of barley 
grain peroxidase 1 

gi|167081 

gi|157830301 
Q40069 39.3 

1772.90 DSVVVSGGPDYRVPLGR 

1843.98 LFPRPDPTISPTFLSR 

1970.96 TPNVFDNKYYIDLVNR 
2520.28 EGLFVSDQDLFTNAITRPIVER 

2872.44 SFASTQDVLSDLPGPSSNVQSLLALLGR 

2942.41 LGLDATDLVTISGGHTIGLAHCSSFEDR 
1055.55 YYIDLVNR 

1502.78 GAVVSCSDILALAAR 

PR-1a pathogenesis related protein (Hv-
1a) 

gi|401831  Q43489 17.4 
1404.70 VCGHYTQVVWR 
1412.71 LQAYAQSYANQR 

predicted protein 
gi|326490934 

gi|326493636 

F2D4W3 

F2CR08 
48.2 

978.53 FRAPVEPY 

1790.99 AAVPSGASTGVYEALELR 
1983.92 GNPTVEVDVCCSDGTFAR 

2132.09 QLVLPVPAFNVINGGSHAGNK 

2604.25 MTEECGEQVQIVGDDLLVTNPTR 

predicted protein gi|326491097 F2EE76 11.8 

973.53 KPFPHGYK 

1057.50 VGYVANFCK 

1107.57 YQKFPAEPK 

1505.67 LAPSDACCAVWQK 

predicted protein gi|326493416 F2CQP8 32.8 

889.48 MLHAVYR 

1278.62 ITSFLDPDGWK 

2397.71 GGSTVIAFAQDPDGYLFELIQR 

predicted protein gi|326522492 F2EK36 34.4 

1743.86 GPIQLSHNYNYGPAGR 

1756.83 GFYTYDAFVAAASAFR 

2609.18 YCDILGVGYGNNLDCYNQRPFA 

predicted protein gi|326497617 F2EEX6 36.0 
1475.64 VYSVQLQALDALR 

1864.73 DIQLNYATFQPGATAVR 

predicted protein gi|326520285 F2EJ79 15.4 
1082.46 GAVPVSAPEQK 
1579.59 SVAFYADAFGYNVR 

predicted protein gi|326520537 F2EJK5 22.9 
1478.01 SGAFFFISSDEDR 

2031.36 DGWVVDPAESYNHWAER 

predicted protein gi|326502266 F2DJC5 26.1 
1187.84 TVHFWQVDR 
1514.13 GGVLFMPGVPGVVER 

predicted protein gi|326506996 F2DKF4 12.4 2005.15 GPVEICFDYDDVDAAYR 

predicted protein gi|326502776 F2DV95 80.9 
1477.96 HVAVASVWGLVALR 
1608.98 VTPYDVLLSYPVSR 

2375.33 DAWTFGAADPNSGTAALLELAQR 

predicted protein gi|326502492 F2DJN8 112.8 
1009.54 QLEFFIGR 
1447.73 FIYVEQAFFQR 

predicted protein gi|326513840 F2CYL7 55.8 

1213.66 YFPFVQVASR 

1367.75 LVESEGGSVHVVR 

1555.90 NKPQFLVGPTSVLR 
1603.95 GGPFVFFGFTTSALR 

1818.84 APEPYNLFDHEPSFR 

1945.19 VILGPELAAGLGVPLKELR 
2295.06 R.NTYGWSISVDKHDYEPLDR 

2773.22 GVPGSGVPELPWQHGHGGWSAGCGACR 

predicted protein (heat shock protein) gi|326497219 F2E4C2 71.9 

1215.64 DAGVIAGLNVMR 
1358.60 NALENYAYNMR 

1434.72 MVNHFVQEFKR 

1487.68 TTPSYVAFTDTER 
1540.74 ARFEELNMDLFR 

1691.70 STAGDTHLGGEDFDNR 

1787.96 IINEPTAAAIAYGLDKK 
1821.89 NQVAMNPTNTVFDAKR + Oxidation (M) 

1869.96 MDKTQVHEIVLVGGSTR 

2658.23 EQVFSTYSDNQPGVLIQVYEGER 

protein z-type serpin 
gi|1310677 

 
P06293 43.3 

925.42 LSIAHQTR 

1137.52 LVLGNALYFK 

1144.47 LRSAISSNPER 
1413.58 ISYQFEASSLLR 

1653.66 LSTEPEFIENHIPK 

1688.71 FKISYQFEASSLLR 
1809.75 RLSTEPEFIENHIPK 

2529.03 ELNALAEQVVQFVLANESSTGGPR 

2622.16 AAGNVAFSPLSLHVALSLITAGAGGATR 

protein Z (180 AA) gi|19079 P06293 43.3 

1413.58 ISYQFEASSLLR 

1653.66 LSTEPEFIENHIPK 

1809.75 RLSTEPEFIENHIPK 

purple acid phosphatase isoform a  gi|237847799 C4PKL2 60.3 
1328.64 STPIHETYQPR 

1812.74 NQDLYGSAGDEIYIVR 

putative avenin-like a precursor gi|326501830 F2EGD5 19.0 1816.91 QQCCQPLAQISEQAR 

Rar1 gi|6581046 Q9SE34 25.4 1136.50 QGVETEACSR 
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protein name 
NCBInr  

entry 

UniProtKB 

entry 

mass 

[Da] 

[M + H]+ 

(observed) 
peptide sequence 

serine carboxypeptidase II, chain A gi|20455471 P08818 53.0 

1091.60 GAGLVLNEYR 

1784.84 TAHDSYAFLAAWFER 

1784.85 TAHDSYAFLAAWFER 
1784.88 TAHDSYAFLAAWFER 

2630.23 LPGQPEVDFDMYSGYITVDEAAGR 

2651.30 EFYVAGESYAGHYVPELSQLVHR 
2998.50 IVRLPGQPEVDFDMYSGYITVDEAAGR 

subtilisin-chymotrypsin inhibitor CI-1A gi|124125 P16062 8.9 

973.51 VFVLVAVAR 

2734.05 
DKPNAQVEVIPVDAMVHLNFDPNR + Oxidation 

(M) 

subtilisin-chymotrypsin inhibitor CI-1B gi|124127 P16063 9.0 
1001.53 IFILVAVAR 

2709.00 DKPDAQIEVIPVDAMVPLDFNPNR + Oxidation (M) 

subtilisin-chymotrypsin inhibitor-2A 
chymotrypsin inhibitor-2 

gi|124122 
gi|158530106 

P01053 
A8V4D2 

9.4 1627.68 LFVDKLDNIAQVPR 

thaumatin-like protein TLP8 gi|14164983 Q946Y8 24.3 

1269.67 VITPACPNELR 

1769.79 AAGGCNNACTVFKEDR 

1930.97 LDAGQTWSINVPAGTTSGR 

tissue-ubiquitous beta-amylase 2 gi|61006818 Q4VM11 56.9 
1769.72 SAPEELVQQVLSAGWR 

2086.81 NIEYLTLGVDDQPLFHGR 

triosephosphate isomerase gi|2507469  P34937 26.9 

954.46 FFVGGNWK 

1374.69 VIACVGETLEQR 

1381.66 SLLGESSEFVGEK 
1811.94 LRPEIQVAAQNCWVK 

trypsin inhibitor CMc gi|161784337 P34951 15.2 2873.54 AFPPSQSQGAPPQLPPLATECPAEVKR 

trypsin inhibitor cme precursor 

BTI-CMe1 
BTI-CMe3.1 protein 

Trypsin inhibitor CMe 

gi|1405736 

gi|2707922 
gi|2707924 

gi|85682780 

P01086 16.1 

1544.77 TYVVSQICHQGPR 

1614.70 CCDELSAIPAYCR 

trypsin/amylase inhibitor pUP13 gi|225102 not mapped 14.7 
1205.72 ELSDLPESCR 
1237.92 SIPINPLPACR 

1918.72 CDALSILVNGVITEDGSR 

trypsin/amylase inhibitor pUP38 gi|225103 not mapped 12.4 1875.99 LLVAPGQCNLATIHNVR 
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10.2. Barley proteins identified after chymotryptic digestion 

The summary of barley proteins identified after chymotryptic digestion in the entire doctoral 

thesis, including corresponding identified peptides and their sequences. 

protein name 
NCBInr  

entry 

UniProtKB 

entry 

mass 

[Da] 

[M + H]+ 

(observed) 
peptide sequence 

alpha-amylase inhibitor BMAI-1 gi|2506771 P16968 16.4 1506.82 DRAVASLPAVCNQY 

alpha-amylase type B isozyme gi|2851583 P04063 47.5 

1003.51 RFDFAKGY 

1186.70 RVQKELVEW 

1461.80 GPRYDVGNLIPGGF 
1619.87 IDRSEPSFAVAEIW 

alpha-amylase/trypsin inhibitor CMa gi|585289 P28041 15.5 
1569.84 KDLPGCPKEPQRDF 

1686.83 FIGRRSHPDWSVL 

alpha-amylase/trypsin inhibitor CMb gi|585290 P32936 16.5 

1001.62 VRILVTPGF 

1388.78 VRILVTPGFCNL 

1458.71 ANIPQQCRCQAL 
1591.80 TATPITPLPSCRDY 

alpha-amylase/trypsin inhibitor CMd gi|585291 P11643 18.5 
1812.91 VAPGQCNLATIHNVRY 

2164.93 CCQELAEIPQQCRCEAL 

B1 Hordein gi|82548225 Q2XQF0 34.5 

1227.70 RHEAIRAIVY 

1372.65 YRILRGVGPSVGV 

1834.00 LQPHQIAQLEATTSIAL 

B3 Hordein gi|123459     P06471 30.2 

920.55 RAIVYSIV 
1213.71 RHEAVRAIVY 

1487.62 RTLPTMCSVNVPL 

1501.79 RTLPTMCSVNVPL + Propionamide (C) 
1650.83 RTLPTMCSVNVPLY 

1666.83 RTLPTMCSVNVPLY + Oxidation (M) 

1834.00 LQPHQIAQLEATTSIAL 

beta-amylase gi|113786 P16098 59.6 

1107.55 NDTPERTQF 

1254.63 NDTPERTQFF 

1420.78 RLSNQLVEGQNY 

1583.86 VDRMHANLPRDPY 

2183.27 SNNLIKHGDRILDEANKVF 

2257.22 KAAAAAVGHPEWEFPNDVGQY 

beta-D-xylosidase gi|18025342 Q8W011 84.4 

1126.56 DGNPKYNRY 

1310.78 AKNNPKIGAIVW 

1518.87 RIGQVIGTEARGVY 
1618.93 YRIGQVIGTEARGVY 

beta-glucosidase gi|804656 Q40025 57.7 

1021.51 GDRVKNWF 

1072.52 YRDYITEL 
1100.65 KIVGNRLPGF 

1188.62 NEPRVVAALGY 

1212.61 SRQGFPAGFVF 
1711.84 FLDPITNGRYPSSML 

1824.92 NRLIDYMLQQGITPY 

1906.06 IVTHNIILSHAAAVQRY 
2145.03 SRIFPDGTGKVNQEGVDYY 

2233.10 SADESRMVKGSIDYVGINQY 

C Hordein gi|167016  Q40037 5.9 

1425.83 LPQKPFPVQQPF 
2131.09 RQQAELIIPQQPQQPFPL 

2156.13 IIPQQPQQPFPLQPHQPY 

2794.41 QPQQPFPQQPQQPLPRPQQPFPW 

C Hordein gi|442524 Q41210 36.5 

1171.61 RQLNPSSQEL 

1425.78 LPQQPFPVQQPF 

1989.93 RQLNPSSQELQSPQQSY 
2103.76 RQLNPSSQELQSPQQSYL 

2156.13 IIPQQPQQPFPLQPHQPY 

2466.26 QPQQPFPQPQQPIAHQPQQPF 
2794.41 QPQQPFPQQPQQPLPRPQQPFPW 

cold-regulated protein gi|10799810 Q9FSI8 17.6 1725.92 ALVVQDIDADERVPW 

D Hordein 

 
gi|1167498 Q40054 75.1 

879.51 SQVVRQY 

1172.61 LQPGQGQQGPY 
1398.78 RDVSPECRPVAL 

1729.92 TQQKPGQGYNPGGTSPL 

1816.94 DQQLVGQLPWSTGLQM + Oxidation (M) 

2054.15 EACRRVVDQQLVGQLPW 

2313.21 HQQGGGFGGGLTTEQPQGGKQPF 

2928.60 YPIATSPQQPGQGQQLGQGQQPGHGQQL 

4192.05 
HQSVTSSQQPGQGQQGSYPGSTFPQQPGQGQQPG

QRQPW 
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protein name 
NCBInr  

entry 

UniProtKB 

entry 

mass 

[Da] 

[M + H]+ 

(observed) 
peptide sequence 

γ Hordein gi|123464 P17990 34.7 

1047.59 LQPHQIAQL 

1133.58 QQLNPCKVF 

1725.84 QPQQQPQFPQQKPF 
2687.88 QQPQHQFPQPTQQFPQRPLLPF 

chain C, Amy2BASI PROTEIN-protein 

complex from barley seed 
gi|4699833 P07596 22.5 

872.41 RADANYY 

1049.55 RDLKGGAWF 
2127.07 VSQDPNGQHDGFPVRITPY 

2274.15 FVSQDPNGQHDGFPVRITPY 

2353.11 ADPPPVHDTDGHELRADANYY 

predicted protein gi|326523729 F2DD64 86.8 1310.78 AQNNPKIGAIVW 

predicted protein gi|326489434 F2E2X6 44.7 

1294.65 DIYWPLRNAF 

1647.84 DAATSGIARADKVEPF 

2357.23 RAVGSCAPGELLESLPAGAAGVAGF 

predicted protein gi|326521432 F2DP98 48.3 

1427.71 VQRSGALTHVVVY 

1468.78 HASPPEFRKRPF 

2095.18 SAAPSPALIPRDQPAVAAHIL 

predicted protein gi|326513840 F2CYL7 55.8 

1017.55 VQVASRGGPF 

1095.59 RIPRYFPF 

1574.96 RVILGPELAAGLGVPL 
1639.75 NLFDHEPSFRNTY 

2308.12 SISVDKHDYEPLDRSDIGVY 

predicted protein gi|326498119 F2DIK1 33.8 

935.56 VRDVATQF 
1404.83 DRTPEEILGIVY 

1782.14 VAGLLGVESAQDAVIRAL 

1839.10 SLAYDRTPEEILGIVY 

predicted protein gi|326529599 F2EBM4 76.9 2053.98 IQEGGSETSSLEVQRGDVY 

protein z-type serpin gi|1310677 P06293 43.3 

1014.67 RALGLQLPF 

1518.88 VLANESSTGGPRIAF 

1614.96 ATDVRLSIAHQTRF 
1931.11 RLASAISSNPERAAGNVAF 

2115.26 ALRLASAISSNPERAAGNVAF 

2457.40 STEPEFIENHIPKQTVEVGRF 

putative splicing factor 3b gi|114318675 A7Y0E4 41.3 1215.58 SLDPDDCLQPL 

serine carboxypeptidase I gi|2815493  P07519 54.6 1634.91 AGYVTVDEGHGRNLF 
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