Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Precise date for the Laacher See eruption synchronizes the Younger Dryas

Matters Arising to this article was published on 05 July 2023

Abstract

The Laacher See eruption (LSE) in Germany ranks among Europe’s largest volcanic events of the Upper Pleistocene1,2. Although tephra deposits of the LSE represent an important isochron for the synchronization of proxy archives at the Late Glacial to Early Holocene transition3, uncertainty in the age of the eruption has prevailed4. Here we present dendrochronological and radiocarbon measurements of subfossil trees that were buried by pyroclastic deposits that firmly date the LSE to 13,006 ± 9 calibrated years before present (bp; taken as ad 1950), which is more than a century earlier than previously accepted. The revised age of the LSE necessarily shifts the chronology of European varved lakes5,6 relative to the Greenland ice core record, thereby dating the onset of the Younger Dryas to 12,807 ± 12 calibrated years bp, which is around 130 years earlier than thought. Our results synchronize the onset of the Younger Dryas across the North Atlantic–European sector, preclude a direct link between the LSE and Greenland Stadial-1 cooling7, and suggest a large-scale common mechanism of a weakened Atlantic Meridional Overturning Circulation under warming conditions8,9,10.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: LSE wood finds.
Fig. 2: Dendrochronological cross-dating of pre-LSE tree-ring width measurements.
Fig. 3: Dating of the LSE.
Fig. 4: Multi-proxy alignment of circum-Atlantic records.

Similar content being viewed by others

Data availability

Data that support the findings of this study are available from the NOAA/World Data Service for Paleoclimatology data (https://www.ncdc.noaa.gov/paleo/study/33194). Source data are provided with this paper.

References

  1. Schmincke, H.-U. in Mantle Plumes (eds Ritter, J. R. R. & Christensen, U. R.) 241–322 (Springer, 2007).

  2. Schmincke, H.-U., Park, C. & Harms, E. Evolution and environmental impacts of the eruption of Laacher See Volcano (Germany) 12,900 a BP. Quat. Int. 61, 61–72 (1999).

    Article  Google Scholar 

  3. Lane, C. S., Blockley, S. P. E., Bronk Ramsey, C. & Lotter, A. F. Tephrochronology and absolute centennial scale synchronisation of European and Greenland records for the last glacial to interglacial transition: a case study of Soppensee and NGRIP. Quat. Int. 246, 145–156 (2011).

    Article  Google Scholar 

  4. Reinig, F. et al. Towards a dendrochronologically refined date of the Laacher See eruption around 13,000 years ago. Quat. Sci. Rev. 229, 106128 (2020).

    Article  Google Scholar 

  5. Brauer, A., Endres, C. & Negendank, J. F. W. Lateglacial calendar year chronology based on annually laminated sediments from Lake Meerfelder Maar, Germany. Quat. Int. 61, 17–25 (1999).

    Article  Google Scholar 

  6. Rach, O., Brauer, A., Wilkes, H. & Sachse, D. Delayed hydrological response to Greenland cooling at the onset of the Younger Dryas in western Europe. Nat. Geosci. 7, 109–112 (2014).

    Article  ADS  CAS  Google Scholar 

  7. Baldini, J. U. L., Brown, R. J. & Mawdsley, N. Evaluating the link between the sulfur-rich Laacher See volcanic eruption and the Younger Dryas climate anomaly. Clim. Past 14, 969–990 (2018).

    Article  Google Scholar 

  8. Broecker, W. S., Peteet, D. M. & Rind, D. Does the ocean–atmosphere system have more than one stable mode of operation? Nature 315, 21–26 (1985).

    Article  ADS  CAS  Google Scholar 

  9. Rahmstorf, S. et al. Exceptional twentieth-century slowdown in Atlantic Ocean overturning circulation. Nat. Clim. Change 5, 475–480 (2015).

    Article  ADS  Google Scholar 

  10. Caesar, L., Rahmstorf, S., Robinson, A., Feulner, G. & Saba, V. Observed fingerprint of a weakening Atlantic Ocean overturning circulation. Nature 556, 191–196 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Holasek, R. E., Self, S. & Woods, A. W. Satellite observations and interpretation of the 1991 Mount Pinatubo eruption plumes. J. Geophys. Res. 101, 27635–27655 (1996).

    Article  ADS  Google Scholar 

  12. Baales, M. et al. Impact of the Late Glacial eruption of the Laacher See volcano, central Rhineland, Germany. Quat. Res. 58, 273–288 (2002).

    Article  Google Scholar 

  13. van den Bogaard, P. 40Ar/39Ar ages of sanidine phenocrysts from Laacher See tephra (12,900 yr BP): chronostratigraphic and petrological significance. Earth Planet. Sci. Lett. 133, 163–174 (1995).

    Article  ADS  Google Scholar 

  14. Textor, C., Sachs, P. M., Graf, H.-F. & Hansteen, T. H. The 12 900 years BP Laacher See eruption: estimation of volatile yields and simulation of their fate in the plume. Geol. Soc. Lon. Spec. Pub. 213, 307–328 (2003).

    Article  ADS  CAS  Google Scholar 

  15. Reinig, F. et al. New tree-ring evidence for the Late Glacial period from the northern pre-Alps in eastern Switzerland. Quat. Sci. Rev. 186, 215–224 (2018).

    Article  ADS  Google Scholar 

  16. Reinig, F. et al. Introducing anatomical techniques to subfossil wood. Dendrochronologia 52, 146–151 (2018).

    Article  Google Scholar 

  17. Schweingruber, F. H. Tree Rings: Basics and Applications of Dendrochronology (Kluwer Academic Publishers, 1988).

  18. Reimer, P. J. et al. The IntCal20 Northern Hemisphere radiocarbon age calibration curve (0–55 cal kBP). Radiocarbon 62 725–757 (2020).

    Article  CAS  Google Scholar 

  19. Brauer, A., Haug, G. H., Dulski, P., Sigman, D. M. & Negendank, J. F. W. An abrupt wind shift in western Europe at the onset of the Younger Dryas cold period. Nat. Geosci. 1, 520–523 (2008).

    Article  ADS  CAS  Google Scholar 

  20. Haflidason, H., Sejrup, H. P., Klitgaard Kristensen, D. & Johnsen, S. Coupled response of the late glacial climatic shifts of northwest Europe reflected in Greenland ice cores: evidence from the northern North Sea. Geology 23, 1059–1062 (1995).

    Article  ADS  Google Scholar 

  21. Hughen, K. A., Southon, J. R., Lehman, S. J. & Overpeck, J. T. Synchronous radiocarbon and climate shifts during the last deglaciation. Science 290, 1951–1955 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  22. Johnsen, S. J. et al. Irregular glacial interstadials recorded in a new Greenland ice core. Nature 359, 311–313 (1992).

    Article  ADS  Google Scholar 

  23. Rasmussen, S. O. et al. A stratigraphic framework for abrupt climatic changes during the Last Glacial period based on three synchronized Greenland ice-core records: refining and extending the INTIMATE event stratigraphy. Quat. Sci. Rev. 106, 14–28 (2014).

    Article  ADS  Google Scholar 

  24. Lane, C. S., Brauer, A., Blockley, S. P. E. & Dulski, P. Volcanic ash reveals time-transgressive abrupt climate change during the Younger Dryas. Geology 41, 1251–1254 (2013).

    Article  ADS  Google Scholar 

  25. Muschitiello, F. et al. Fennoscandian freshwater control on Greenland hydroclimate shifts at the onset of the Younger Dryas. Nat. Commun. 6, 8939 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  26. Obreht, I. et al. An annually resolved record of Western European vegetation response to Younger Dryas cooling. Quat. Sci. Rev. 231, 106198 (2020).

    Article  Google Scholar 

  27. Lohne, Ø. S., Mangerud, J. & Birks, H. H. Precise 14C ages of the Vedde and Saksunarvatn ashes and the Younger Dryas boundaries from western Norway and their comparison with the Greenland Ice Core (GICC05) chronology. J. Quat. Sci. 28, 490–500 (2013).

    Article  Google Scholar 

  28. Brauer, A. et al. High resolution sediment and vegetation responses to Younger Dryas climate change in varved lake sediments from Meerfelder Maar, Germany. Quat. Sci. Rev. 18, 321–329 (1999).

    Article  ADS  Google Scholar 

  29. Neugebauer, I. et al. A Younger Dryas varve chronology from the Rehwiese palaeolake record in NE-Germany. Quat. Sci. Rev. 36, 91–102 (2012).

    Article  ADS  Google Scholar 

  30. Lotter, A. F., Eicher, U., Siegenthaler, U. & Birks, H. J. B. Late‐glacial climatic oscillations as recorded in Swiss lake sediments. J. Quat. Sci. 7, 187–204 (1992).

    Article  Google Scholar 

  31. Merkt, J. & Müller, H. Varve chronology and palynology of the Lateglacial in Northwest Germany from lacustrine sediments of Hämelsee in Lower Saxony. Quat. Int. 61, 41–59 (1999).

    Article  Google Scholar 

  32. Steffensen, J. P. et al. High-resolution Greenland ice core data show abrupt climate change happens in few years. Science 321, 680–684 (2008).

    Article  ADS  CAS  PubMed  Google Scholar 

  33. Adolphi, F. et al. Connecting the Greenland ice-core and U/Th timescales via cosmogenic radionuclides: testing the synchroneity of Dansgaard–Oeschger events. Clim. Past 14, 1755–1781 (2018).

    Article  Google Scholar 

  34. von Grafenstein, U., Erlenkeuser, H., Brauer, A., Jouzel, J., & Johnsen, S. J. A mid-European decadal isotope-climate record from 15,500 to 5000 years B.P. Science 284, 1654–1657 (1999).

    Article  ADS  Google Scholar 

  35. Lauterbach, S. et al. Environmental responses to Lateglacial climatic fluctuations recorded in the sediments of pre-Alpine Lake Mondsee (northeastern Alps). J. Quat. Sci. 26, 253–267 (2011).

    Article  Google Scholar 

  36. Lohne, Ø. S., Mangerud, J. & Birks, H. H. IntCal13 calibrated ages of the Vedde and Saksunarvatn ashes and the Younger Dryas boundaries from Kråkenes, western Norway. J. Quat. Sci. 29, 506–507 (2014).

    Article  Google Scholar 

  37. Condron, A. & Winsor, P. Meltwater routing and the Younger Dryas. Proc. Natl Acad. Sci. USA 109, 19928–19933 (2012).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  38. Renssen, H. et al. Multiple causes of the Younger Dryas cold period. Nat. Geosci. 8, 946–949 (2015).

    Article  ADS  CAS  Google Scholar 

  39. Hajdas, I. et al. AMS radiocarbon dating and varve chronology of Lake Soppensee: 6000 to 12000 14C years BP. Clim. Dyn. 9, 107–116 (1993).

    Article  Google Scholar 

  40. Wulf, S. et al. Tracing the Laacher See tephra in the varved sediment record of the Trzechowskie palaeolake in central Northern Poland. Quat. Sci. Rev. 76, 129–139 (2013).

    Article  ADS  Google Scholar 

  41. Park, C. & Schmincke, H.-U. Multistage damming of the Rhine River by tephra fallout during the 12,900 BP Plinian Laacher See Eruption (Germany). Syn-eruptive Rhine damming I. J. Volcanol. Geotherm. Res. 389, 106688 (2020).

    Article  CAS  Google Scholar 

  42. Waldmann, G. Vulkanfossilien im Laacher Bims (Gregor and Unger, 1996).

  43. Frechen, J. Die Tuffe des Laacher Vulkangebietes als quartärgeologische Leitgesteine und Zeitmarken. Fortschr. Geol. Rheinl. Westfal. 4, 363–370 (1959).

    Google Scholar 

  44. Schweitzer, H.-J. Entstehung und Flora des Trasses im nördlichen Laachersee-Gebiet. E&G Quat. Sci. J. 9, 28–56 (1958).

    Article  Google Scholar 

  45. Street, M. Analysis of Late Palaeolithic and Mesolithic Faunal Assemblages in the Northern Rhineland, Germany. PhD thesis, Univ. Birmingham (1993).

  46. Street, M. Ein Wald der Allerodzeit bei Miesenheim, Stadt Andernach (Neuwieder Becken). Archäologisches Korrespondenzblatt 16, 13–22 (1986).

    Google Scholar 

  47. Baales, M., Bittmann, F. & Kromer, B. Verkohlte Bäume im Trass der Laacher See-Tephra bei Kruft (Neuwieder Becken): ein Beitrag zur Datierung des Laacher See-Ereignisses und zur Vegetation der Allerød-Zeit am Mittelrhein. Archäologisches Korrespondenzblatt 28, 191–204 (1998).

    Google Scholar 

  48. Brunnacker, K., Fruth, H.-J., Juvigné, E. & Urban, B. Spätpaläolithische Funde aus Thür, Kreis Mayen-Koblenz. Archäologisches Korrespondenzblatt Mainz 12, 417–427 (1982).

    Google Scholar 

  49. Rinn, F. TSAP: time series analyses presentation. Reference manual v.3.0 (RinnTech, 1996).

  50. Synal, H.-A., Stocker, M. & Suter, M. MICADAS: a new compact radiocarbon AMS system. Nucl. Instrum. Methods Phys. Res. B 259, 7–13 (2007).

    Article  ADS  CAS  Google Scholar 

  51. Wacker, L. et al. MICADAS: routine and high-precision radiocarbon dating. Radiocarbon 52, 252–262 (2010).

    Article  CAS  Google Scholar 

  52. Wacker, L. et al. Radiocarbon dating to a single year by means of rapid atmospheric 14C changes. Radiocarbon 56, 573–579 (2014).

    Article  CAS  Google Scholar 

  53. Němec, M., Wacker, L. & Gäggeler, H. Optimization of the graphitization process at age-1. Radiocarbon 52, 1380–1393 (2010).

    Article  Google Scholar 

  54. Sookdeo, A. et al. Quality dating: a well-defined protocol implemented at ETH for high-precision 14C-dates tested on Late Glacial wood. Radiocarbon 62, 891–899 (2020).

    Article  CAS  Google Scholar 

  55. Kaiser, K. F. Beiträge zur Klimageschichte vom späten Hochglazial bis ins frühe Holozän: rekonstruiert mit Jahrringen und Molluskenschalen aus verschiedenen Vereisungsgebieten (Ziegler, 1993).

  56. Bronk Ramsey, C. Deposition models for chronological records. Quat. Sci. Rev. 27, 42–60 (2008).

    Article  ADS  Google Scholar 

  57. Bronk Ramsey, C. Dealing with outliers and offsets in radiocarbon dating. Radiocarbon 51, 1023–1045 (2009).

    Article  Google Scholar 

  58. Bird, M. I. in Encyclopedia of Quaternary Science (ed. Elias S.A.) 353–360 (Elsevier, 2013).

  59. Holdaway, R. N., Duffy, B. & Kennedy, B. Evidence for magmatic carbon bias in 14C dating of the Taupo and other major eruptions. Nat. Commun. 9, 4110 (2018).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  60. Kromer, B., Spurk, M., Remmele, S., Barbetti, M. & Joniello, V. Segments of atmospheric 14C change as derived from Late Glacial and Early Holocene floating tree-ring series. Radiocarbon 40, 351–358 (1997).

    Article  Google Scholar 

  61. Muschitiello, F. & Wohlfarth, B. Time-transgressive environmental shifts across Northern Europe at the onset of the Younger Dryas. Quat. Sci. Rev. 109, 49–56 (2015).

    Article  Google Scholar 

  62. Engels, S. et al. Subdecadal-scale vegetation responses to a previously unknown late-Allerød climate fluctuation and Younger Dryas cooling at Lake Meerfelder Maar (Germany). J. Quat. Sci. 31, 741–752 (2016).

    Article  Google Scholar 

  63. Sigl, M. et al. Timing and climate forcing of volcanic eruptions for the past 2,500 years. Nature 523, 543–549 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  64. Svensson, A. et al. Bipolar volcanic synchronization of abrupt climate change in Greenland and Antarctic ice cores during the last glacial period. Clim. Past 16, 1565–1580 (2020).

    Article  Google Scholar 

  65. Adolphi, F. & Muscheler, R. Synchronizing the Greenland ice core and radiocarbon timescales over the Holocene – Bayesian wiggle-matching of cosmogenic radionuclide records. Clim. Past 12, 15–30 (2016).

    Article  Google Scholar 

  66. Adolphi, F. et al. Radiocarbon calibration uncertainties during the last deglaciation: insights from new floating tree-ring chronologies. Quat. Sci. Rev. 170, 98–108 (2017).

    Article  ADS  Google Scholar 

  67. Muscheler, R., Adolphi, F. & Knudsen, M. F. Assessing the differences between the IntCal and Greenland ice-core time scales for the last 14,000 years via the common cosmogenic radionuclide variations. Quat. Sci. Rev. 106, 81–87 (2014).

    Article  ADS  Google Scholar 

  68. Ruth, U., Wagenbach, D., Steffensen, J. P. & Bigler, M. Continuous record of microparticle concentration and size distribution in the central Greenland NGRIP ice core during the last glacial period. J. Geophys. Res. 108, 4098 (2003).

    Google Scholar 

  69. Bigler, M. et al. Optimization of high-resolution continuous flow analysis for transient climate signals in ice cores. Environ. Sci. Technol. 45, 4483–4489 (2011).

    Article  ADS  CAS  PubMed  Google Scholar 

  70. Mortensen, A. K., Bigler, M., Grönvold, K., Steffensen, J. P. & Johnsen, S. J. Volcanic ash layers from the Last Glacial Termination in the NGRIP ice core. J. Quat. Sci. 20, 209–219 (2005).

    Article  Google Scholar 

  71. Reimer, P. J. et al. IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55, 1869–1887 (2013).

    Article  CAS  Google Scholar 

  72. Buizert, C. et al. Abrupt ice-age shifts in southern westerly winds and Antarctic climate forced from the north. Nature 563, 681–685 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  73. Seierstad, I. K. et al. Consistently dated records from the Greenland GRIP, GISP2 and NGRIP ice cores for the past 104 ka reveal regional millennial-scale δ18O gradients with possible Heinrich event imprint. Quat. Sci. Rev. 106, 29–46 (2014).

    Article  ADS  Google Scholar 

  74. Sigl, M. et al. The WAIS Divide deep ice core WD2014 chronology – part 2: annual-layer counting (0–31 ka BP). Clim. Past 12, 769–786 (2016).

    Article  Google Scholar 

  75. Litt, T., Behre, K.-E., Meyer, K.-D., Stephan, H.-J. & Wansa, S. Stratigraphische Begriffe für das Quartär des norddeutschen Vereisungsgebietes. Eiszeitalt. Ggw. Quat. Sci. J. 56, 7–65 (2007).

    Google Scholar 

  76. Riede, F. Past-forwarding ancient calamities. Pathways for making archaeology relevant in disaster risk reduction research. Humanities 6, 79 (2017).

    Article  Google Scholar 

  77. Patton, H. et al. Deglaciation of the Eurasian ice sheet complex. Quat. Sci. Rev. 169, 148–172 (2017).

    Article  ADS  Google Scholar 

  78. Zielinski, G. A., Mayewski, P. A., Meeker, L. D., Whitlow, S. & Twickler, M. S. A. 110,000-yr record of explosive volcanism from the GISP2 (Greenland) ice core. Quat. Res. 45, 109–118 (1996).

    Article  CAS  Google Scholar 

  79. Severi, M. et al. Synchronisation of the EDML and EDC ice cores for the last 52 kyr by volcanic signature matching. Clim. Past 3, 367–374 (2007).

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the WSL-internal project ‘LSD’ and the Swiss National Science Foundation (SNF Grant 200021L_157187/1). U.B. and J.E. received funding from SustES: Adaptation strategies for sustainable ecosystem services and food security under adverse environmental conditions (CZ.02.1.01/0.0/0.0/16_019/0000797). M.S. received funding from the European Research Council under the European Union’s Horizon 2020 research and innovation programme (grant agreement no. 820047). We thank A. Hunold, H. Schaaf and B. Streubel for assistance during fieldwork, the University of Hohenheim and M. Friedrich for initial investigations during a DEKLIM-project; and D. Dahl-Jensen and P. Reimer for their constructive feedback that further improved the quality of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

F.R., U.B., O.J. and L.W. designed the study with input from D.N. Tree-ring width measurements were performed by F.R., G.G. and D.N. Radiocarbon measurements and analyses were performed by G.G. and L.W., with the involvement of F.R. L.W. modelled the 14C. The paper was written by F.R., together with U.B., O.J., J.E., C.O., M.S. and L.W. Further editorial contributions were made by F.A., P.C., S.E., C.L. and A.S. Wood samples were prepared and provided by O.J., H.P., A.L. and S.R. Ice core data were provided and discussed by M.S. and F.A.

Corresponding author

Correspondence to Frederick Reinig.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature thanks Paula Reimer and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Temporal and spatial setting of the Laacher See eruption.

a, Climatic development of the past 15,000 years according to the NGRIP Greenland δ18O ice core record23 (blue), covering the Late Glacial and Holocene periods, shown together with the LST 40Ar/39Ar age determination13 at 12,900 ± 560 bp (mean ± 1σ; red). INTIMATE event stratigraphy23 of the Late Glacial is outlined left of the NGRIP record, with the European palaeobotanical subdivision of this period75 aligned on the right. BØ, Bølling interstadial; MEI, Meiendorf interstadial; YD, YD cold interval. Offsets between both schemes are the topic of intensive and ongoing discussion. b, Geospatial distribution of LST fallout deposits (orange dots; modified from a previously published study76) with locations of Laacher See (red triangle) and the source of the tree stems used to build the Swiss Late Glacial tree-ring and 14C records18 (green dot; SWILM-14C). The light blue line indicates the extent of the late AL Fenno-Scandinavian ice sheet (modified from a previously published study77). The map was produced using QGIS.

Extended Data Fig. 2 Examples of LSE wood finds.

a, Locations of archived (circles with black borders) and newly excavated (in 2019, circles with orange borders) subfossil wood samples within the MLST deposits in the Neuwied Basin (modified from a previously published study12). Isopachs for LST fallout are shown in red, and grey shading indicates the extent of MLST ignimbrite deposits. bf Subfossil trees from the Brohltal (1986, photograph by E. Turner) (b), from an excavated forest at Miesenheim (1986, photograph by M. Street)46 (c), from Kruft (1996, photograph by M. Baales)47 (d); from Meurin (e) and an excavation at a new locality in Miesenheim (f). Note that only the samples from Brohltahl and Meurin are included in this study, as other materials were exhausted during previous analyses or unsuitable for the performed measurements (see Methods). The map was produced using QGIS. All photographs are provided by the MONREPOS picture archive.

Extended Data Fig. 3 Reduced χ2 test results.

ah, Most likely 14C calendar placement52 of the last ring of Poplar 1 matched to SWILM-14C with an offset of 11 cal. years (yrs) (a); Poplar 1 matched to SWILM-14Cplus with an offset of 22 cal. years (b); Poplar 2 matched to SWILM-14C with an offset of 18 cal. years (c); Birch 1 matched to SWILM-14C with an offset of 36 cal. years (d); Birch 1 matched to SWILM-14Cplus with an offset of 46 cal. years (e); all pre-LSE samples matched to SWILM-14C with an offset of 20 cal. years (f); Daettnau 3 matched to SWILM-14C with an offset of 13 cal. years (g); and Poplar 1 matched to Daettnau 3 with an offset of 25 cal. years (h). Black lines denote to the 95% confidence interval.

Extended Data Fig. 4 Multi-proxy alignment of North Atlantic and European records.

a, NGRIP (grey) and Greenland Ice Sheet Project Two (GISP2) (black) oxygen isotopes (δ18O) at 20-year resolution from Greenland on the GICC05 timescale23, Alpine δ18O records from Lake Ammersee34 (yellow) and Lake Mondsee35 (red), and MFM5 (blue) varve thickness plotted as 10-year running means, dated to the MFM timescale with a LSE date of 12,880 bpMFM (±40 years; red dotted vertical line) indicating time-transgressive GS-1 and the YD cooling between 13,200 and 12,400 bpGICC05. b, The same European proxy records shifted 126 years according to the new LSE date of 13,006 cal.bp (red vertical line)28 now outlining a synchronized cooling into the GS-1 and YD across the North Atlantic. Blue shading denotes the period of strongest cooling evident in the Greenland ice core isotope records.

Extended Data Fig. 5 Non-sea-salt sulfate and particle records from polar ice cores around the time of the LSE.

a, Ice-core records of sulfate from the Greenland Ice Sheet Project Two (GISP2)78 and NGRIP69 records. b, High-resolution (1 cm depth) record of sulfate and dust68 from the NGRIP ice-core record69 between 13,015 and 12,975 bpGICC05 with three volcanic anomalies at 12,980 bpGICC05 (1), 12,982 bpGICC05 (2) and 12,994 bpGICC05 (3; see Extended Data Table 3). Black arrows indicate additional obtained sulfate peaks; the cyan bar denotes the 17-cm sampling range in which tephra shards were previously detected and characterized70 encompassing two distinct volcanic signals (1 and 2). c, Ice-core records of sulfate (calculated from sulfur measurements) from West Antarctic Ice Sheet Divide (WD)74 and Dronning Maud Land (EDML)79 ice core. All ice cores are synchronized65,72,73 on the GICC05 chronology23 timescale with respect to ad 1950. Grey horizontal lines represent the accumulated age error in 13,000 bp with ±105 years for WD201474 and ±140 years for GICC0523, which has been further reduced (−12/+21 years; 2σ) based on the synchronization of tree-ring 14C and ice-core 10Be33. Red horizontal lines outline the added LSE 14C uncertainty (±9 years). Yellow dots denote the obtained bipolar sulfate anomalies.

Source data

Extended Data Fig. 6 D_Sequence wiggle-matching results with OxCal.

ac, All radiocarbon (14C) modelled LSE ages obtained from Poplar 1 (a), Birch 1 (b) and Poplar 2 (c), applying the extended Swiss Late Glacial Reference (SWILM-14Cplus) point to a similar eruption date. Whereas the long-lived Poplar 1 and Birch 1 exceed the 14C plateau with the initial 14C dates, Poplar 2 provide three possible wiggle-match placements; however, under the constraint that this sample was also found within the MLST deposits, the two younger 14C results need to be excluded.

Extended Data Table 1 Pre-LSE chronology
Extended Data Table 2 Annually varved layer estimate of the YD onset relative to the LST
Extended Data Table 3 Volcanic sulfate depositions in Greenland and Antarctica around the new LSE date
Extended Data Table 4 OxCal calibration results of 14C-dated events from the Kråkenes core chronologies

Source data

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reinig, F., Wacker, L., Jöris, O. et al. Precise date for the Laacher See eruption synchronizes the Younger Dryas. Nature 595, 66–69 (2021). https://doi.org/10.1038/s41586-021-03608-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-021-03608-x

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene