1887

Abstract

Six Gram-negative, rod-shaped bacterial strains isolated from entomopathogenic nematodes were characterized to determine their taxonomic position. 16S rRNA and gene sequences indicate that they belong to the class , family and genus , and that some of them are conspecifics. Two of them, APURE and JAR, were selected for further molecular characterization using whole genome- and whole-proteome-based phylogenetic reconstructions and sequence comparisons. Phylogenetic reconstructions using whole genome and whole proteome sequences show that strains APURE and JAR are closely related to subsp. ATCC 29999 and to subsp. MEX47-22. Moreover, digital DNA–DNA hybridization (dDDH) values between APURE and subsp. ATCC 29999, APURE and subsp. MEX47-22, and APURE and JAR are 61.6, 61.2 and 64.1 %, respectively. These values are below the 70 % divergence threshold that delimits prokaryotic species. dDDH scores between JAR and subsp. ATCC 29999 and between JAR and subsp. MEX47-22 are 71.9 and 74.8 %, respectively. These values are within the 70 and 79 % divergence thresholds that delimit prokaryotic subspecies. Based on these genomic divergence values, APURE and JAR represent two different taxa, for which we propose the names: sp. nov. with APURE (=CCM 9236 =CCOS 2019) as type strain and subsp. subsp. nov. with JAR (=CCM 9235 =CCOS 2021) as type strain. Our study contributes to a better understanding of the biodiversity of an important bacterial group with enormous biotechnological and agricultural potential.

Funding
This study was supported by the:
  • Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (Award 186094)
    • Principle Award Recipient: A. R. MachadoRicardo
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.005872
2023-05-12
2024-05-02
Loading full text...

Full text loading...

References

  1. Ciche TA, Kim K, Kaufmann-Daszczuk B, Nguyen KCQ, Hall DH. Cell invasion and matricide during Photorhabdus luminescens transmission by Heterorhabditis bacteriophora nematodes. Appl Environ Microbiol 2008; 74:2275–2287 [View Article] [PubMed]
    [Google Scholar]
  2. Dhakal M, Nguyen KB, Hunt DJ, Ehlers R-U, Spiridonov SE et al. Molecular identification, phylogeny and phylogeography of the entomopathogenic nematodes of the genus Heterorhabditis Poinar, 1976: a multigene approach. Nematol 2020; 23:451–466 [View Article]
    [Google Scholar]
  3. Akhurst RJ. Taxonomic study of Xenorhabdus, a genus of bacteria symbiotically associated with insect pathogenic nematodes. Int J Syst Evol Microbiol 1983; 33:38–45 [View Article]
    [Google Scholar]
  4. Andaló V, Moino A, Nguyen K. Heterorhabditis amazonensis n. sp. (Rhabditida: Heterorhabditidae) from Amazonas, Brazil. Nematol 2006; 8:853–867 [View Article]
    [Google Scholar]
  5. Ciche TA, Ensign JC. For the insect pathogen Photorhabdus luminescens, which end of a nematode is out?. Appl Environ Microbiol 2003; 69:1890–1897 [View Article] [PubMed]
    [Google Scholar]
  6. Bode HB. Entomopathogenic bacteria as a source of secondary metabolites. Curr Opin Chem Biol 2009; 13:224–230 [View Article] [PubMed]
    [Google Scholar]
  7. Tobias NJ, Mishra B, Gupta DK, Sharma R, Thines M et al. Genome comparisons provide insights into the role of secondary metabolites in the pathogenic phase of the Photorhabdus life cycle. BMC Genomics 2016; 17:537 [View Article] [PubMed]
    [Google Scholar]
  8. Tobias NJ, Shi Y-M, Bode HB. Refining the natural product repertoire in entomopathogenic bacteria. Trends Microbiol 2018; 26:833–840 [View Article] [PubMed]
    [Google Scholar]
  9. Stock SP. Diversity, biology and evolutionary relationships. In Nematode Pathogenesis of Insects and Other Pests Springer; 2015 pp 3–27
    [Google Scholar]
  10. Somvanshi VS, Sloup RE, Crawford JM, Martin AR, Heidt AJ et al. A single promoter inversion switches Photorhabdus between pathogenic and mutualistic states. Science 2012; 337:88–93 [View Article] [PubMed]
    [Google Scholar]
  11. Zhang X, van Doan C, Arce CCM, Hu L, Gruenig S et al. Plant defense resistance in natural enemies of a specialist insect herbivore. Proc Natl Acad Sci U S A 2019; 116:23174–23181 [View Article] [PubMed]
    [Google Scholar]
  12. Toepfer S, Zellner M. Entomopathogenic nematodes can replace soil insecticides in western corn rootworm control. In Entomopathogenic Nematodes Can Replace Soil Insecticides in Western Corn Rootworm Control vol 129 2017 pp 144–156
    [Google Scholar]
  13. Machado RAR, Thönen L, Arce CCM, Theepan V, Prada F et al. Publisher correction: engineering bacterial symbionts of nematodes improves their biocontrol potential to counter the western corn rootworm. Nat Biotechnol 2020; 38:1–9 [View Article] [PubMed]
    [Google Scholar]
  14. Fallet P, Machado RA, Toepfer S, Ye W, Kajuga J et al. A Rwandan survey of entomopathogenic nematodes that can potentially be used to control the fall armyworm. IOBC-WPRS Bulletin 2020; 150:87–90
    [Google Scholar]
  15. Fallet P, De Gianni L, Machado RAR, Bruno P, Bernal JS et al. Comparative screening of Mexican, Rwandan and commercial entomopathogenic nematodes to be used against invasive fall armyworm, Spodoptera frugiperda. Insects 2022; 13:205 [View Article] [PubMed]
    [Google Scholar]
  16. Clarke DJ. Photorhabdus: a tale of contrasting interactions. Microbiology 2020; 166:335–348 [View Article] [PubMed]
    [Google Scholar]
  17. Boemare NE, Akhurst RJ, Mourant RG. DNA relatedness between Xenorhabdus spp. (Enterobacteriaceae), symbiotic bacteria of entomopathogenic nematodes, and a proposal to transfer Xenorhabdus luminescens to a new genus, Photorhabdus gen. nov. Int J Syst Bacteriol 1993; 43:249–255 [View Article]
    [Google Scholar]
  18. Akhurst RJ, Boemare NE, Janssen PH, Peel MM, Alfredson DA et al. Taxonomy of Australian clinical isolates of the genus Photorhabdus and proposal of Photorhabdus asymbiotica subsp. asymbiotica subsp. nov. and P. asymbiotica subsp. australis subsp. nov. Int J Syst Evol Microbiol 2004; 54:1301–1310 [View Article] [PubMed]
    [Google Scholar]
  19. Ferreira T, van Reenen C, Pagès S, Tailliez P, Malan AP et al. Photorhabdus luminescens subsp. noenieputensis subsp. nov., a symbiotic bacterium associated with a novel Heterorhabditis species related to Heterorhabditis indica. Int J Syst Evol Microbiol 2013; 63:1853–1858 [View Article] [PubMed]
    [Google Scholar]
  20. Ferreira T, van Reenen CA, Endo A, Tailliez P, Pagès S et al. Photorhabdus heterorhabditis sp. nov., a symbiont of the entomopathogenic nematode Heterorhabditis zealandica. Int J Syst Evol Microbiol 2014; 64:1540–1545 [View Article] [PubMed]
    [Google Scholar]
  21. Fischer-Le Saux M, Viallard V, Brunel B, Normand P, Boemare NE. Polyphasic classification of the genus Photorhabdus and proposal of new taxa: P. luminescens subsp. luminescens subsp. nov., P. luminescens subsp. akhurstii subsp. nov., P. luminescens subsp. laumondii subsp. nov., P. temperata sp. nov., P. temperata subsp. temperata subsp. nov. and P. asymbiotica sp. nov. Int J Syst Bacteriol 1999; 49 Pt 4:1645–1656 [View Article] [PubMed]
    [Google Scholar]
  22. Glaeser SP, Tobias NJ, Thanwisai A, Chantratita N, Bode HB et al. Photorhabdusluminescens subsp. namnaonensis subsp. nov., isolated from Heterorhabditis baujardi nematodes. Int J Syst Evol Microbiol 2017; 67:1046–1051 [View Article] [PubMed]
    [Google Scholar]
  23. Hazir S, Stackebrandt E, Lang E, Schumann P, Ehlers R-U et al. Two new subspecies of Photorhabdus luminescens, isolated from Heterorhabditis bacteriophora (Nematoda: Heterorhabditidae): Photorhabdus luminescens subsp. kayaii subsp. nov. and Photorhabdus luminescens subsp. thracensis subsp. nov. Syst Appl Microbiol 2004; 27:36–42 [View Article] [PubMed]
    [Google Scholar]
  24. Machado RAR, Bruno P, Arce CCM, Liechti N, Köhler A et al. Photorhabdus khanii subsp. guanajuatensis subsp. nov., isolated from Heterorhabditis atacamensis, and Photorhabdus luminescens subsp. mexicana subsp. nov., isolated from Heterorhabditis mexicana entomopathogenic nematodes. Int J Syst Evol Microbiol 2019; 69:652–661 [View Article] [PubMed]
    [Google Scholar]
  25. Machado RAR, Wüthrich D, Kuhnert P, Arce CCM, Thönen L et al. Whole-genome-based revisit of Photorhabdus phylogeny: proposal for the elevation of most Photorhabdus subspecies to the species level and description of one novel species Photorhabdus bodei sp. nov., and one novel subspecies Photorhabdus laumondii subsp. clarkei subsp. nov. Int J Syst Evol Microbiol 2018; 68:2664–2681 [View Article] [PubMed]
    [Google Scholar]
  26. Tailliez P, Laroui C, Ginibre N, Paule A, Pagès S et al. Phylogeny of Photorhabdus and Xenorhabdus based on universally conserved protein-coding sequences and implications for the taxonomy of these two genera. Proposal of new taxa: X. vietnamensis sp. nov., P. luminescens subsp. caribbeanensis subsp. nov., P. luminescens subsp. hainanensis subsp. nov., P. temperata subsp. khanii subsp. nov., P. temperata subsp. tasmaniensis subsp. nov., and the reclassification of P. luminescens subsp. thracensis as P. temperata subsp. thracensis comb. nov. Int J Syst Evol Microbiol 2010; 60:1921–1937 [View Article] [PubMed]
    [Google Scholar]
  27. Tóth T, Lakatos T. Photorhabdus temperata subsp. cinerea subsp. nov., isolated from Heterorhabditis nematodes. Int J Syst Evol Microbiol 2008; 58:2579–2581 [View Article] [PubMed]
    [Google Scholar]
  28. Thomas GM, Poinar GO. Xenorhabdus gen. nov., a genus of entomopathogenic, nematophilic bacteria of the family Enterobacteriaceae. Int J Syst Bacteriol 1979; 29:352–360 [View Article]
    [Google Scholar]
  29. Szállás E, Koch C, Fodor A, Burghardt J, Buss O et al. Phylogenetic evidence for the taxonomic heterogeneity of Photorhabdus luminescens. Int J Syst Bacteriol 1997; 47:402–407 [View Article] [PubMed]
    [Google Scholar]
  30. Orozco RA, Hill T, Stock SP. Characterization and phylogenetic relationships of Photorhabdus luminescens subsp. sonorensis (γ-Proteobacteria: Enterobacteriaceae), the bacterial symbiont of the entomopathogenic nematode Heterorhabditis sonorensis (Nematoda: Heterorhabditidae). Curr Microbiol 2013; 66:30–39 [View Article] [PubMed]
    [Google Scholar]
  31. An R, Grewal PS. Photorhabdus temperata subsp. stackebrandtii subsp. nov. (Enterobacteriales: Enterobacteriaceae). Curr Microbiol 2010; 61:291–297 [View Article] [PubMed]
    [Google Scholar]
  32. An R, Grewal PS. Photorhabdus luminescens subsp. kleinii subsp. nov. (Enterobacteriales: Enterobacteriaceae). Curr Microbiol 2011; 62:539–543 [View Article] [PubMed]
    [Google Scholar]
  33. Machado RAR, Muller A, Ghazal SM, Thanwisai A, Pagès S et al. Photorhabdus heterorhabditis subsp. aluminescens subsp. nov., Photorhabdus heterorhabditis subsp. heterorhabditis subsp. nov., Photorhabdus australis subsp. thailandensis subsp. nov., Photorhabdus australis subsp. australis subsp. nov., and Photorhabdus aegyptia sp. nov. isolated from Heterorhabditis entomopathogenic nematodes. Int J Syst Evol Microbiol 2021; 71: [View Article] [PubMed]
    [Google Scholar]
  34. Castaneda-Alvarez C, Machado RAR, Morales-Montero P, Boss A, Muller A et al. Photorhabdus antumapuensis sp. nov., a novel symbiotic bacterial species associated with Heterorhabditis atacamensis entomopathogenic nematodes. Int J Syst Evol Microbiol 2022; 72:5525 [View Article] [PubMed]
    [Google Scholar]
  35. Parte AC, Sardà Carbasse J, Meier-Kolthoff JP, Reimer LC, Göker M. List of Prokaryotic names with Standing in Nomenclature (LPSN) moves to the DSMZ. Int J Syst Evol Microbiol 2020; 70:5607–5612 [View Article] [PubMed]
    [Google Scholar]
  36. White GF. A method for obtaining infective nematode larvae from cultures. Science 1927; 66:302–303 [View Article] [PubMed]
    [Google Scholar]
  37. Bedding RA AR. A simple technique for the detection o f insect paristic rhabditid nematodes in soil. Nematologica 1975109–110 [View Article]
    [Google Scholar]
  38. Joyce SA, Reid A, Driver F, Curran J. Application of polymerase chain reaction (PCR) methods to identification of entomopathogenic nematodes. In Burnell AM, Ehlers R-U, Masson JP. eds COST 812 Biotechnology: Genetics of Entomopathogenic Nematode-Bacterium Complexes. Proceedings of Symposium & Workshop, St. Patrick’s College, Maynooth, Co. Kildare, Ireland, Luxembourg, European Commission, DG XII 1994 pp 178–187
    [Google Scholar]
  39. Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotechnol 1994; 3:294–299 [PubMed]
    [Google Scholar]
  40. Machado RAR, Bhat AH, Abolafia J, Muller A, Bruno P et al. Multi-locus phylogenetic analyses uncover species boundaries and reveal the occurrence of two new entomopathogenic nematode species, Heterorhabditis ruandica n. sp. and Heterorhabditis zacatecana n. sp. J Nematol 2021; 53:e2021-89 [View Article] [PubMed]
    [Google Scholar]
  41. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article] [PubMed]
    [Google Scholar]
  42. Kumar S, Stecher G, Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article] [PubMed]
    [Google Scholar]
  43. Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004; 32:1792–1797 [View Article] [PubMed]
    [Google Scholar]
  44. Chevenet F, Brun C, Bañuls A-L, Jacq B, Christen R. TreeDyn: towards dynamic graphics and annotations for analyses of trees. BMC Bioinformatics 2006; 7:439 [View Article] [PubMed]
    [Google Scholar]
  45. Letunic I, Bork P. Interactive Tree of Life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res 2016; 44:W242–5 [View Article] [PubMed]
    [Google Scholar]
  46. Lane D. 16S/23S rRNA Sequencing, 1st edn. New York, NY: John Wiley and Sons; 1991
    [Google Scholar]
  47. Marchesi JR, Sato T, Weightman AJ, Martin TA, Fry JC et al. Design and evaluation of useful bacterium-specific PCR primers that amplify genes coding for bacterial 16S rRNA. Appl Environ Microbiol 1998; 64:795–799 [View Article] [PubMed]
    [Google Scholar]
  48. Hill V, Kuhnert P, Erb M, Machado RAR. Identification of Photorhabdus symbionts by MALDI-TOF MS. Microbiology 2020; 166:522–530 [View Article] [PubMed]
    [Google Scholar]
  49. Hall T. BioEdit: a user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. Nucleic Acids Symp 199995–98
    [Google Scholar]
  50. Seemann T. Barrnap 0.7: rapid ribosomal RNA prediction; 2013 https://github.com/tseemann/barrnap
  51. Hasegawa M, Kishino H, Yano T. Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. J Mol Evol 1985; 22:160–174 [View Article] [PubMed]
    [Google Scholar]
  52. Nei M, Kumar S. Molecular Evolution and Phylogenetics Oxford University Press; 2000
    [Google Scholar]
  53. Machado RAR, Somvanshi VS, Muller A, Kushwah J, Bhat CG. Photorhabdus hindustanensis sp. nov., Photorhabdus akhurstii subsp. akhurstii subsp. nov., and Photorhabdus akhurstii subsp. bharatensis subsp. novsubsp. nov., isolated from Heterorhabditis entomopathogenic nematodes. Int J Syst Evol Microbiol 2021; 71:4998
    [Google Scholar]
  54. Petit RA, Read TD. Bactopia: a flexible pipeline for complete analysis of bacterial genomes. mSystems 2020; 5:e00190-20 [View Article] [PubMed]
    [Google Scholar]
  55. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 2014; 30:2114–2120 [View Article] [PubMed]
    [Google Scholar]
  56. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19:455–477 [View Article] [PubMed]
    [Google Scholar]
  57. Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A et al. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS One 2014; 9:e112963 [View Article] [PubMed]
    [Google Scholar]
  58. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 2015; 25:1043–1055 [View Article] [PubMed]
    [Google Scholar]
  59. Hyatt D, Chen G-L, Locascio PF, Land ML, Larimer FW et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 2010; 11:1–11 [View Article] [PubMed]
    [Google Scholar]
  60. Steinegger M, Söding J. MMseqs2 enables sensitive protein sequence searching for the analysis of massive data sets. Nat Biotechnol 2017; 35:1026–1028 [View Article] [PubMed]
    [Google Scholar]
  61. van Dongen SM. Graph clustering by flow simulation Ph. D Thesis: University of Utrecht, Utrecht University Repository; 2000
    [Google Scholar]
  62. van Dongen S, Abreu-Goodger C. Using MCL to extract clusters from networks. In Bacterial Molecular Networks Springer; 2012 pp 281–295 [View Article] [PubMed]
    [Google Scholar]
  63. Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 2013; 30:772–780 [View Article] [PubMed]
    [Google Scholar]
  64. Stamatakis A. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 2006; 22:2688–2690 [View Article] [PubMed]
    [Google Scholar]
  65. Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014; 30:1312–1313 [View Article] [PubMed]
    [Google Scholar]
  66. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article] [PubMed]
    [Google Scholar]
  67. Meier-Kolthoff JP, Hahnke RL, Petersen J, Scheuner C, Michael V et al. Complete genome sequence of DSM 30083(T), the type strain (U5/41(T)) of Escherichia coli, and a proposal for delineating subspecies in microbial taxonomy. Stand Genomic Sci 2014; 9:2 [View Article] [PubMed]
    [Google Scholar]
  68. Auch AF, von Jan M, Klenk H-P, Göker M. Digital DNA-DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Stand Genomic Sci 2010; 2:117–134 [View Article] [PubMed]
    [Google Scholar]
  69. Auch AF, Klenk H-P, Göker M. Standard operating procedure for calculating genome-to-genome distances based on high-scoring segment pairs. Stand Genomic Sci 2010; 2:142–148 [View Article] [PubMed]
    [Google Scholar]
  70. Moore WEC, Stackebrandt E, Kandler O, Colwell RR, Krichevsky MI et al. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 1987; 37:463–464 [View Article]
    [Google Scholar]
  71. Chen C-Y, Clark CG, Langner S, Boyd DA, Bharat A et al. Detection of antimicrobial resistance using proteomics and the comprehensive antibiotic resistance database: a case study. Proteomics Clin Appl 2020; 14:e1800182 [View Article] [PubMed]
    [Google Scholar]
  72. Alcock BP, Raphenya AR, Lau TTY, Tsang KK, Bouchard M et al. CARD 2020: antibiotic resistome surveillance with the comprehensive antibiotic resistance database. Nucleic Acids Res 2020; 48:D517–D525 [View Article] [PubMed]
    [Google Scholar]
  73. Guitor AK, Raphenya AR, Klunk J, Kuch M, Alcock B et al. Capturing the resistome: a targeted capture method to reveal antibiotic resistance determinants in metagenomes. Antimicrob Agents Chemother 2019; 64:e01324-19 [View Article] [PubMed]
    [Google Scholar]
  74. Tsang K, Speicher D, McArthur A. Pathogen taxonomy updates at the comprehensive antibiotic resistance database: implications for molecular epidemiology. Life Sciences 2019 [View Article]
    [Google Scholar]
  75. McArthur AG, Waglechner N, Nizam F, Yan A, Azad MA et al. The comprehensive antibiotic resistance database. Antimicrob Agents Chemother 2013; 57:3348–3357 [View Article] [PubMed]
    [Google Scholar]
  76. Jia B, Raphenya AR, Alcock B, Waglechner N, Guo P et al. CARD 2017: expansion and model-centric curation of the comprehensive antibiotic resistance database. Nucleic Acids Res 2017; 45:D566–D573 [View Article] [PubMed]
    [Google Scholar]
  77. Liu B, Zheng D, Jin Q, Chen L, Yang J. VFDB 2019: a comparative pathogenomic platform with an interactive web interface. Nucleic Acids Res 2019; 47:D687–D692 [View Article] [PubMed]
    [Google Scholar]
  78. Chen L, Zheng D, Liu B, Yang J, Jin Q. VFDB 2016: hierarchical and refined dataset for big data analysis–10 years on. Nucleic Acids Res 2016; 44:D694–7 [View Article] [PubMed]
    [Google Scholar]
  79. Chen L, Yang J, Yu J, Yao Z, Sun L et al. VFDB: a reference database for bacterial virulence factors. Nucleic Acids Res 2005; 33:D325–8 [View Article] [PubMed]
    [Google Scholar]
  80. Chen L, Xiong Z, Sun L, Yang J, Jin Q. VFDB 2012 update: toward the genetic diversity and molecular evolution of bacterial virulence factors. Nucleic Acids Res 2012; 40:D641–5 [View Article] [PubMed]
    [Google Scholar]
  81. Yang J, Chen L, Sun L, Yu J, Jin Q. VFDB 2008 release: an enhanced web-based resource for comparative pathogenomics. Nucleic Acids Res 2008; 36:D539–42 [View Article] [PubMed]
    [Google Scholar]
  82. Blin K, Shaw S, Kloosterman AM, Charlop-Powers Z, van Wezel GP et al. antiSMASH 6.0: improving cluster detection and comparison capabilities. Nucleic Acids Res 2021; 49:W29–W35 [View Article] [PubMed]
    [Google Scholar]
  83. Blin K, Shaw S, Steinke K, Villebro R, Ziemert N et al. antiSMASH 5.0: updates to the secondary metabolite genome mining pipeline. Nucleic Acids Res 2019; 47:W81–W87 [View Article] [PubMed]
    [Google Scholar]
  84. Eckstein S, Heermann R. Regulation of phenotypic switching and heterogeneity in Photorhabdus luminescens cell populations. J Mol Biol 2019; 431:4559–4568 [View Article] [PubMed]
    [Google Scholar]
  85. Kamitani FL, Almenara DP, Rossi C, Camargo Neves MR, Müller LMA et al. Description and charactrization of the Amazonian entomopathogenic bacterium Photorhabdus luminescens MN7. Microbiology 2018 [View Article]
    [Google Scholar]
  86. Jain C, Rodriguez-R LM, Phillippy AM, Konstantinidis KT, Aluru S. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat Commun 2018; 9:1–8 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.005872
Loading
/content/journal/ijsem/10.1099/ijsem.0.005872
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error