1887

Abstract

One motile, Gram-negative, non-spore-forming and rod-shaped symbiotic bacterium, strain UCH-936, was isolated from nematodes. Results of biochemical, physiological, molecular and genomic analyses suggest that it represents a new species, which we propose to name sp. nov. Digital DNA–DNA hybridization shows that strain UCH-936 is more closely related to DSM 23513, but shares solely 50.5 % similarity, which is below the 70% cut-off value that delimits species boundaries in bacteria. Phylogenetic reconstructions using whole-genome sequences show that strain UCH-936 forms a unique clade, suggesting its novel and distinct taxonomic status again. Similarly, comparative genomic analyses shows that the virulence factor flagella-related gene , the type IV pili-related gene and the vibriobactin-related gene are present in the genome of strain UCH-936 but absent in the genomes of its closest relatives. Biochemically and physiologically, UCH-936 differs also from all closely related species. Therefore, sp. nov. is proposed as a new species with the type strain UCH-936 (CCCT 21.06=CCM 9188=CCOS 1991).

Funding
This study was supported by the:
  • Gebert Rüf Foundation (Award GRS-079/19)
    • Principle Award Recipient: RicardoA.R. Machado
  • Swiss National Science Foundation (Award 186094)
    • Principle Award Recipient: RicardoA.R. Machado
  • Chilean National Agency for Research and Development (ANID) (Award 2021-21210687)
    • Principle Award Recipient: CarlosCastaneda-Alvarez
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.005525
2022-10-10
2024-05-03
Loading full text...

Full text loading...

References

  1. Clarke DJ. Photorhabdus: a tale of contrasting interactions. Microbiology 2014; 166:335–348 [View Article] [PubMed]
    [Google Scholar]
  2. Clarke DJ. The genetic basis of the symbiosis between Photorhabdus and its invertebrate hosts. In Advances in Applied Microbiology Elsevier; 2014 pp 1–29
    [Google Scholar]
  3. Forst S, Nealson K. Molecular biology of the symbiotic-pathogenic bacteria Xenorhabdus spp. and Photorhabdus spp. Microbiol Rev 1996; 60:21–43 [View Article] [PubMed]
    [Google Scholar]
  4. Adeolu M, Alnajar S, Naushad S, S Gupta R. Genome-based phylogeny and taxonomy of the ‘Enterobacteriales’: proposal for enterobacterales ord. nov. divided into the families Enterobacteriaceae, Erwiniaceae fam. nov., Pectobacteriaceae fam. nov., Yersiniaceae fam. nov., Hafniaceae fam. nov., Morgane. Int J Syst Evol Microbiol 2016; 66:5575–5599 [View Article]
    [Google Scholar]
  5. Boemare NE, Akhurst RJ, Mourant RG. DNA relatedness between Xenorhabdus spp. (Enterobacteriaceae), symbiotic bacteria of Entomopathogenic Nematodes, and a proposal to transfer Xenorhabdus luminescens to a new genus, Photorhabdus gen. nov. Int J Syst Bacteriol 1993; 43:249–255 [View Article]
    [Google Scholar]
  6. Fischer-Le Saux M, Viallard V, Brunel B, Normand P, Boemare NE. Polyphasic classification of the genus Photorhabdus and proposal of new taxa: P. luminescens subsp. luminescens subsp. nov., P. luminescens subsp. akhurstii subsp. nov., P. luminescens subsp. laumondii subsp. nov., P. temperata sp. nov., P. temperata subsp. temperata subsp. nov. and P. asymbiotica sp. nov. Int J Syst Bacteriol 1999; 49 Pt 4:1645–1656 [View Article]
    [Google Scholar]
  7. Hazir S, Stackebrandt E, Lang E, Schumann P, Ehlers R-U et al. Two new subspecies of Photorhabdus luminescens, isolated from Heterorhabditis bacteriophora (Nematoda: Heterorhabditidae): Photorhabdus luminescens subsp. kayaii subsp. nov. and Photorhabdus luminescens subsp. Syst Appl Microbiol 2004; 27:36–42 [View Article] [PubMed]
    [Google Scholar]
  8. Akhurst RJ, Boemare NE, Janssen PH, Peel MM, Alfredson DA et al. Taxonomy of Australian clinical isolates of the genus Photorhabdus and proposal of Photorhabdus asymbiotica subspnov. and P. asymbiotica subsp. australis subsp. nov. Int J Syst Evol Microbiol 2004; 54:1301–1310 [View Article]
    [Google Scholar]
  9. Tóth T, Lakatos T. Photorhabdus temperata subsp. cinerea subsp. nov., isolated from Heterorhabditis nematodes. Int J Syst Evol Microbiol 2008; 58:2579–2581 [View Article] [PubMed]
    [Google Scholar]
  10. Tailliez P, Laroui C, Ginibre N, Paule A, Pagès S et al. Phylogeny of Photorhabdus and Xenorhabdus based on universally conserved protein-coding sequences and implications for the taxonomy of these two genera. Proposal of new taxa: X. vietnamensis sp. nov., P. luminescens subs. Int J Syst Evol Microbiol 2010; 60:1921–1937
    [Google Scholar]
  11. Ferreira T, van Reenen C, Pagès S, Tailliez P, Malan AP et al. Photorhabdus luminescens subsp. noenieputensis subsp. nov., a symbiotic bacterium associated with a novel Heterorhabditis species related to Heterorhabditis indica. Int J Syst Evol Microbiol 2013; 63:1853–1858 [View Article] [PubMed]
    [Google Scholar]
  12. Ferreira T, van Reenen CA, Endo A, Tailliez P, Pagès S et al. Photorhabdus heterorhabditis sp. nov., a symbiont of the entomopathogenic nematode Heterorhabditis zealandica. Int J Syst Evol Microbiol 2014; 64:1540–1545 [View Article] [PubMed]
    [Google Scholar]
  13. Machado RAR, Wüthrich D, Kuhnert P, Arce CCM, Thönen L et al. Whole-genome-based revisit of Photorhabdus phylogeny: proposal for the elevation of most Photorhabdus subspecies to the species level and description of one novel species Photorhabdus bodei sp. nov., and one novel subspecies Photorhabdus laumondii subsp. clarkei subsp. nov. Int J Syst Evol Microbiol 2018; 68:2664–2681 [View Article] [PubMed]
    [Google Scholar]
  14. Machado RAR, Bruno P, Arce CCM, Liechti N, Köhler A et al. Photorhabdus khanii subsp. guanajuatensis subsp. nov., isolated from Heterorhabditis atacamensis, and Photorhabdus luminescens subsp. mexicana subsp. nov., isolated from Heterorhabditis mexicana entomopathogenic n. Int J Syst Evol Microbiol 2019; 69:652–661 [View Article]
    [Google Scholar]
  15. Machado RAR, Muller A, Ghazal SM, Thanwisai A, Pagès S et al. Photorhabdus heterorhabditis subsp. aluminescens subsp nov., Photorhabdus heterorhabditis subsp. heterorhabditis subsp. nov., Photorhabdus australis subsp. thailandensis subsp. nov., Photorhabdus australis. Int J Syst Evol Microbiol 2021; 71:1–9 [View Article]
    [Google Scholar]
  16. Thomas GM, Poinar GO. Xenorhabdus gen. nov., a genus of entomopathogenic, nematophilic bacteria of the family Enterobacteriaceae. Int J Syst Bacteriol 1979; 29:352–360 [View Article]
    [Google Scholar]
  17. Orozco RA, Hill T, Stock SP. Characterization and phylogenetic relationships of Photorhabdus luminescens subsp. sonorensis (γ-proteobacteria: Enterobacteriaceae), the bacterial symbiont of the entomopathogenic nematode Heterorhabditis sonorensis (Nematoda: Heterorhabditidae). Curr Microbiol 2013; 66:30–39 [View Article]
    [Google Scholar]
  18. An R, Grewal PS. Photorhabdus temperata subsp. stackebrandtii subsp. nov. (Enterobacteriales: Enterobacteriaceae). Curr Microbiol 2010; 61:291–297 [View Article]
    [Google Scholar]
  19. An R, Grewal PS. Photorhabdus luminescens subsp. kleinii subsp. nov. (Enterobacteriales: Enterobacteriaceae). Curr Microbiol 2011; 62:539–543 [View Article]
    [Google Scholar]
  20. Machado RAR, Somvanshi VS, Muller A, Kushwah J, Bhat CG. Photorhabdus hindustanensis sp. nov., Photorhabdus akhurstii subsp. akhurstii subsp. nov., and Photorhabdus akhurstii subsp. bharatensis subsp. nov., isolated from Heterorhabditis entomopathogenic nematodes. Int J Syst Evol Microbiol 2021; 71: [View Article]
    [Google Scholar]
  21. Stock SP, Goodrich-Blair H. Nematode Parasites, Pathogens and Associates of Insects and Invertebrates of Economic Importance, 2nd edn. Elsevier Ltd; 2012 [View Article]
    [Google Scholar]
  22. Orozco RA, Lee M-M, Stock SP. Soil sampling and isolation of entomopathogenic nematodes (Steinernematidae, Heterorhabditidae). J Vis Exp 2014 [View Article] [PubMed]
    [Google Scholar]
  23. Hill V, Kuhnert P, Erb M, Machado RAR. Identification of Photorhabdus symbionts by MALDI-TOF MS. Microbiology 2020; 166:522–530 [View Article]
    [Google Scholar]
  24. Uluğ D, Hazir C, Hazir S. A new and simple technique for the isolation of symbiotic bacteria associated with entomopathogenic nematodes (Heterorhabditidae and Steinernematidae). Turk J Zool 2015; 39:365–367 [View Article]
    [Google Scholar]
  25. Vrain T, Wakarchuk D, Levesque A, Hamilton R. Intraspecific rDNA restriction fragment length polymorphism in the Xiphinema americanum group. Fundam Appl Nematol 1992; 15:563–573
    [Google Scholar]
  26. Nguyen KB. Methodology, morphology and identification. In Entomopathogenic Nematodes: Systematics, Phylogeny and Bacterial Symbionts Brill; 2007 pp 59–119
    [Google Scholar]
  27. Lane DJ. 16S/23S rRNA sequencing. In Stackebrandt E, Goodfellow M. eds Nucleic Acid Techniques in Bacterial Systematics New York: John Wiley and Sons; 1991 pp 115–175
    [Google Scholar]
  28. Hasegawa M, Kishino H, Yano T. Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. J Mol Evol 1985; 22:160–174 [View Article] [PubMed]
    [Google Scholar]
  29. Kumar S, Stecher G, Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article] [PubMed]
    [Google Scholar]
  30. Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004; 32:1792–1797 [View Article] [PubMed]
    [Google Scholar]
  31. Letunic I, Bork P. Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res 2016; 44:W242–5 [View Article] [PubMed]
    [Google Scholar]
  32. Chevenet F, Brun C, Bañuls A-L, Jacq B, Christen R. TreeDyn: towards dynamic graphics and annotations for analyses of trees. BMC Bioinformatics 2006; 7:439 [View Article] [PubMed]
    [Google Scholar]
  33. Price MN, Dehal PS, Arkin AP. FastTree 2–approximately maximum-likelihood trees for large alignments. PLoS One 2010; 5:e9490 [View Article]
    [Google Scholar]
  34. Lemoine F, Domelevo Entfellner J-B, Wilkinson E, Correia D, Dávila Felipe M et al. Renewing Felsenstein’s phylogenetic bootstrap in the era of big data. Nature 2018; 556:452–456 [View Article] [PubMed]
    [Google Scholar]
  35. Price MN, Dehal PS, Arkin AP. FastTree: computing large minimum evolution trees with profiles instead of a distance matrix. Mol Biol Evol 2009; 26:1641–1650 [View Article] [PubMed]
    [Google Scholar]
  36. Lemoine F, Correia D, Lefort V, Doppelt-Azeroual O, Mareuil F et al. NGPhylogeny.fr: new generation phylogenetic services for non-specialists. Nucleic Acids Res 2019; 47:W260–W265 [View Article] [PubMed]
    [Google Scholar]
  37. Bertels F, Silander OK, Pachkov M, Rainey PB, van Nimwegen E. Automated reconstruction of whole-genome phylogenies from short-sequence reads. Mol Biol Evol 2014; 31:1077–1088 [View Article] [PubMed]
    [Google Scholar]
  38. Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. Nucleic Acids Symp Ser 1999; 41:95–98
    [Google Scholar]
  39. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article] [PubMed]
    [Google Scholar]
  40. Meier-Kolthoff JP, Klenk HP, Göker M. Taxonomic use of DNA G+C content and DNA-DNA hybridization in the genomic age. Int J Syst Evol Microbiol 2014; 64:352–356 [View Article] [PubMed]
    [Google Scholar]
  41. Auch AF, Klenk H-P, Göker M. Standard operating procedure for calculating genome-to-genome distances based on high-scoring segment pairs. Stand Genomic Sci 2010; 2:142–148 [View Article] [PubMed]
    [Google Scholar]
  42. Auch AF, von Jan M, Klenk H-P, Göker M. Digital DNA-DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Stand Genomic Sci 2010; 2:117–134 [View Article] [PubMed]
    [Google Scholar]
  43. Meier-Kolthoff JP, Hahnke RL, Petersen J, Scheuner C, Michael V et al. Complete genome sequence of DSM 30083(T), the type strain (U5/41(T)) of Escherichia coli, and a proposal for delineating subspecies in microbial taxonomy. Stand Genomic Sci 2014; 9:2 [View Article] [PubMed]
    [Google Scholar]
  44. Alcock BP, Raphenya AR, Lau TTY, Tsang KK, Bouchard M et al. CARD 2020: antibiotic resistome surveillance with the comprehensive antibiotic resistance database. Nucleic Acids Res 2020; 48:D517–D525 [View Article] [PubMed]
    [Google Scholar]
  45. Chen C-Y, Clark CG, Langner S, Boyd DA, Bharat A et al. Detection of antimicrobial resistance using proteomics and the comprehensive antibiotic resistance database: a case study. Proteomics Clin Appl 2020; 14:e1800182 [View Article] [PubMed]
    [Google Scholar]
  46. Guitor AK, Raphenya AR, Klunk J, Kuch M, Alcock B et al. Capturing the resistome: a targeted capture method to reveal antibiotic resistance determinants in metagenomes. Antimicrob Agents Chemother 2019; 64:e01324-19 [View Article] [PubMed]
    [Google Scholar]
  47. Faltyn M, Alcock B, McArthur A. Evolution and nomenclature of the trimethoprim resistant dihydrofolate (dfr) reductases. Epub ahead of print 2019 [View Article]
    [Google Scholar]
  48. Tsang K, Speicher D, McArthur A. Pathogen taxonomy updates at the comprehensive antibiotic resistance database: implications for molecular epidemiology. Life Sci2019 [View Article]
    [Google Scholar]
  49. Jia B, Raphenya AR, Alcock B, Waglechner N, Guo P et al. CARD 2017: expansion and model-centric curation of the comprehensive antibiotic resistance database. Nucleic Acids Res 2017; 45:D566–D573 [View Article] [PubMed]
    [Google Scholar]
  50. McArthur AG, Waglechner N, Nizam F, Yan A, Azad MA et al. The comprehensive antibiotic resistance database. Antimicrob Agents Chemother 2013; 57:3348–3357 [View Article] [PubMed]
    [Google Scholar]
  51. Liu B, Zheng D, Jin Q, Chen L, Yang J. VFDB 2019: A comparative pathogenomic platform with an interactive web interface. Nucleic Acids Res 2019; 47:D687–D692 [View Article] [PubMed]
    [Google Scholar]
  52. Chen L, Zheng D, Liu B, Yang J, Jin Q. VFDB 2016: hierarchical and refined dataset for big data analysis–10 years on. Nucleic Acids Res 2016; 44:D694–7 [View Article]
    [Google Scholar]
  53. Chen L, Xiong Z, Sun L, Yang J, Jin Q. VFDB 2012 update: toward the genetic diversity and molecular evolution of bacterial virulence factors. Nucleic Acids Res 2012; 40:D641–5 [View Article] [PubMed]
    [Google Scholar]
  54. Yang J, Chen L, Sun L, Yu J, Jin Q. VFDB 2008 release: an enhanced web-based resource for comparative pathogenomics. Nucleic Acids Res 2008; 36:D539–42 [View Article] [PubMed]
    [Google Scholar]
  55. Chen L, Yang J, Yu J, Yao Z, Sun L et al. VFDB: A reference database for bacterial virulence factors. Nucleic Acids Res 2005; 33:D325–8 [View Article] [PubMed]
    [Google Scholar]
  56. Booysen E, Malan AP, Dicks LMT. Colour of Heterorhabditis zealandica-infected-Galleria mellonella dependent on the Photorhabdus symbiont, with two new nematode-symbiotic associations reported. J Invertebr Pathol 2022; 189:107729 [View Article] [PubMed]
    [Google Scholar]
  57. Akhurst RJ, Mourant RG, Baud L, Boemare NE. Phenotypic and DNA relatedness between nematode symbionts and clinical strains of the genus Photorhabdus (Enterobacteriaceae). Int J Syst Bacteriol 1996; 46:1034–1041 [View Article] [PubMed]
    [Google Scholar]
  58. Tremblay J, Déziel E. Improving the reproducibility of Pseudomonas aeruginosa swarming motility assays. J Basic Microbiol 2008; 48:509–515 [View Article] [PubMed]
    [Google Scholar]
  59. Wang Y, Gu J-D. Influence of temperature, salinity and pH on the growth of environmental Aeromonas and Vibrio species isolated from Mai Po and the Inner Deep Bay Nature Reserve Ramsar Site of Hong Kong. J Basic Microbiol 2005; 45:83–93 [View Article] [PubMed]
    [Google Scholar]
  60. Powers EM. Efficacy of the Ryu nonstaining KOH technique for rapidly determining Gram reactions of food-borne and waterborne bacteria and yeasts. Appl Environ Microbiol 1995; 61:3756–3758 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.005525
Loading
/content/journal/ijsem/10.1099/ijsem.0.005525
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error