Eur. J. Entomol. 118: 240-249, 2021 | DOI: 10.14411/eje.2021.025

Early successional colonizers both facilitate and inhibit the late successional colonizers in communities of dung-inhabiting insectsOriginal article

Frantisek X.J. SLADECEK ORCID...1, 2, Simon T. SEGAR ORCID...1, 3, Martin KONVICKA ORCID...1, 2
1 University of South Bohemia in Ceske Budejovice, Faculty of Science, Branisovska 31, 370 05 Ceske Budejovice, Czech Republic; e-mails: franzsladecek@gmail.com, konva333@gmail.com, simon.t.segar@gmail.com
2 Biology Centre, Czech Academy of Sciences, Institute of Entomology, Branisovska 31, 370 05 Ceske Budejovice, Czech Republic
3 Agriculture & Environment Department, Harper Adams University, Newport, Shropshire, TF10 8NB, UK

The influence of early arriving species on the establishment and activity of later ones (the priority effect) is a key issue in ecological succession. Priority effects have been extensively studied in communities subject to autotrophic succession (plants, sessile animals), but only sporadically studied in communities subject to heterotrophic succession (e.g. dung or carrion inhabiting communities). We studied the influence of early successional colonizers on late successional colonizers by manipulating the successional processes in cow dung pats via delaying, and thus lowering, colonization by early successional insects. The decreased activity of early successional insects did not affect the species richness of late successional insects, but it did lead to increased abundance of colonizers. Late successional coprophagous beetles were facilitated by early successional species while larvae of late successional coprophagous flies were inhibited, presumably, by the larvae of early successional flies. We therefore propose that both facilitation and inhibition have a role to play in the heterotrophic succession of coprophilous insects. In addition, facilitation and inhibition among taxa seems to reflect their evolutionary relationships, with facilitation being prominent between phylogenetically distant lineages (early successional Diptera and late successional Coleoptera), and inhibition being more common between closely related lineages (early vs. late successional Diptera). These patterns are strikingly reminiscent of the situation in the autotrophic succession of plants.

Keywords: Diptera, Coleoptera, dung-inhabiting insects, competition, heterotrophic succession, successional mechanisms

Received: June 15, 2021; Revised: August 19, 2021; Accepted: August 19, 2021; Published online: August 30, 2021  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
SLADECEK, F.X.J., SEGAR, S.T., & KONVICKA, M. (2021). Early successional colonizers both facilitate and inhibit the late successional colonizers in communities of dung-inhabiting insects. EJE118, Article 240-249. https://doi.org/10.14411/eje.2021.025
Download citation

References

  1. Barth D., Karrer M., Heinzemutz E. & Elster N. 1994: Colonization and degradation of cattle dung: aspects of sampling, fecal composition, and artificially formed pats. - Environ. Entomol. 23: 571-578. Go to original source...
  2. Bates D., Maechler M., Bolker B. & Walker S. 2015: Fitting linear mixed-effects models using lme4. - J. Stat. Softw. 67: 1-49. Go to original source...
  3. Begon M., Townsend C. & Harper J. 2006: Ecology: From Individuals to Ecosystems, 4th ed. Wiley-Blackwell, Hoboken, 750 pp.
  4. Buse J., Slachta M., Sladecek F.X.J., Pung M., Wagner T. & Entling M.H. 2015: Relative importance of pasture size and grazing continuity for the long-term conservation of European dung beetles. - Biol. Conserv. 187: 112-119. Go to original source...
  5. Callaway R. & Walker L. 1997: Competition and facilitation: A synthetic approach to interactions in plant communities. - Ecology 78: 1958-1965. Go to original source...
  6. Castillo J., Verdú J. & Valiente-Banuet A. 2010: Neighborhood phylodiversity affects plant performance. - Ecology 91: 3656-3663. Go to original source...
  7. Cimon-Morin J., Darveau M. & Poulin M. 2013: Fostering synergies between ecosystem services and biodiversity in conservation planning: A review. - Biol. Conserv. 166: 144-154. Go to original source...
  8. Clements F. 1916: Plant Succession: Analysis of the Development of Vegetation. Carnegie Institution of Washington Publication Sciences 242, Washington, 512 pp.
  9. Connell J. & Slatyer R. 1977: Mechanisms of succession in natural communities and their role in community stability and organization. - Am. Nat. 111: 1119-1144. Go to original source...
  10. Davis A.L.V. 1989: Residence and breeding of Oniticellus (Coleoptera, Scarabaeidae) within cattle pads - inhibition by dung-burying beetles. - J. Entomol. Soc. S. Afr. 52: 229-236.
  11. DeCastro-Arrazola I., Hortal J., Noriega J.A. & Sanchez-Pinero F. 2020: Assessing the functional relationship between dung beetle traits and dung removal, burial, and seedling emergence. - Ecology 101: e03138, 7 pp. Go to original source...
  12. Dickie I., Schnitzer S., Reich P. & Hobbie S. 2005: Spatially disjunct effects of co-occurring competition and facilitation. - Ecol. Lett. 8: 1191-1200. Go to original source...
  13. Dowding V. 1967: The function and ecological significance of the pharyngeal ridges occurring in the larvae of some cyclorrhaphous Diptera. - Parasitology 57: 371-388. Go to original source...
  14. Finn J. & Gittings T. 2003: A review of competition in north temperate dung beetle communities. - Ecol. Entomol. 28: 1-13. Go to original source...
  15. Fowler F., Wilcox T., Orr S. & Watson W. 2020: Sampling Efficacy and survival rates of Labarrus pseudolividus (Coleoptera: Scarabaeidae) and Onthophagus taurus (Coleoptera: Scarabaeidae) using flotation and sieve-separation methodology. - J. Insect Sci. 20(5): 18, 7 pp. Go to original source...
  16. Fox J. & Weisberg S. 2019: An (R) Companion to Applied Regression. SAGE, Los Angeles, 572 pp.
  17. Frank K., Bruckner A., Bluthgen N. & Schmitt T. 2018: In search of cues: dung beetle attraction and the significance of volatile composition of dung. - Chemoecology 28: 145-152. Go to original source...
  18. Gittings T. & Giller P. 1998: Resource quality and the colonisation and succession of coprophagous dung beetles. - Ecography 21: 581-592. Go to original source...
  19. Gleason H. 1926: The individualistic concept of the plant association. - Bull. Torrey Bot. Club 53: 7-26. Go to original source...
  20. Gleason H. 1927: Further views on the succession concept. - Ecology 8: 299-326. Go to original source...
  21. Hammer O. 1941: Biological and ecological investigations on flies associated with pasturing cattle and their excrement. - Vidensk. Medd. Fra Dansk. Naturh. Foren. 105: 1-257.
  22. Hammond P.M. 1976: A review of the genus Anotylus C.G. Thomson (Coleoptera: Staphylinidae). - Bull. Br. Mus. Nat. Hist. Entomol. 33: 139-185.
  23. Hansen M. 1987: The Hydrophiloidea (Coleoptera) of Fennoscandia and Denmark. - Fauna Entomol. Scand. 18: 1-253. Go to original source...
  24. Hanski I. & Koskela H. 1977: Niche relations among dung-inhabiting beetles. - Oecologia 28: 203-231. Go to original source...
  25. Harrison X.A. 2014: Using observation-level random effects to model overdispersion in count data in ecology and evolution. - PeerJ 2: e616, 19 pp. Go to original source...
  26. Hartig F. 2019: DHARMa: Residual Diagnostics for Hierarchical (Multi-Level / Mixed) Regression Models. URL: https://CRAN.R-project.org/package=DHARMa
  27. Hirschberger P. 1998: Spatial distribution, resource utilisation and intraspecific competition in the dung beetle Aphodius ater. - Oecologia 116: 136-142. Go to original source...
  28. Hirschberger P. & Degro H.N. 1996: Oviposition of the dung beetle Aphodius ater in relation to the abundance of yellow dungfly larvae (Scatophaga stercoraria). - Ecol. Entomol. 21: 352-357. Go to original source...
  29. Holter P. 1977: An experiment on dung removal by Aphodius larvae (Scarabaeidae) and earthworms. - Oikos 28: 130-136. Go to original source...
  30. Holter P. 1979: Effect of dung-beetles (Aphodius spp.) and earthworms on the disappearance of cattle dung. - Oikos 32: 393-402. Go to original source...
  31. Holter P. 1982: Resource utilization and local coexistence in a guild of scarabaeid dung beetles (Aphodius spp.). - Oikos 39: 213-227. Go to original source...
  32. Kadlec J., Mikatova S., Maslo P., Sipkova H., Sipek P. & Sladecek F.X.J. 2019: Delaying insect access alters community composition on small carrion: a quantitative approach. - Entomol. Exp. Appl. 167: 729-740. Go to original source...
  33. Koskela H. 1972: Habitat selection of dung-inhabiting staphylinids (Coleoptera) in relation to age of the dung. - Ann. Zool. Fenn. 9: 156-171.
  34. Krasfur E.S. & Moon R.D. 1997: Bionomics of the face fly, Musca autumnalis. - Annu. Rev. Entomol. 42: 503-523. Go to original source...
  35. Laurence B. 1954: The larval inhabitants of cow pats. - J. Anim. Ecol. 23: 234-260. Go to original source...
  36. Lee C. & Wall R. 2006: Cow-dung colonization and decomposition following insect exclusion. - Bull. Entomol. Res. 96: 315-322. Go to original source...
  37. Leps J. & Smilauer P. 2003: Multivariate Analysis of Ecological Data Using CANOCO. Cambridge University Press, Cambridge, UK, 269 pp. Go to original source...
  38. Lumaret J. & Kadiri N. 1995: The influence of the first wave of colonizing insects on cattle dung dispersal. - Pedobiologia 39: 506-517. Go to original source...
  39. Lussenhop J., Kumar R., Wicklow D.T. & Lloyd J.E. 1980: Insect effects on bacteria and fungi in cattle dung. - Oikos 34: 54-58. Go to original source...
  40. Lussenhop J., Kumar R. & Lloyd J. 1986: Nutrient regeneration by fly larvae in cattle dung. - Oikos 47: 233-238. Go to original source...
  41. Maggi E., Bertocci I., Vaselli S. & Benedetti-Cecchi L. 2011: Connell and Slatyer's models of succession in the biodiversity era. - Ecology 92: 1399-1406. Go to original source...
  42. Mohr C.O. 1943: Cattle droppings as ecological units. - Ecol. Monogr. 13: 275-298. Go to original source...
  43. Pechal J.L., Benbow M.E., Crippen T.L., Tarone A.M. & Tomberlin J.K. 2014: Delayed insect access alters carrion decomposition and necrophagous insect community assembly. - Ecosphere 5(4): 45, 21 pp. Go to original source...
  44. Perez-Valera E., Kyselkova M., Ahmed E., Sladecek F.X.J., Goberna M. & Elhottova D. 2019: Native soil microorganisms hinder the soil enrichment with antibiotic resistance genes following manure applications. - Sci. Rep. 9: 6760, 10 pp. Go to original source...
  45. Ridsdill-Smith T.J., Hayles L. & Palmer M.J. 1986: Competition between the bush fly and a dung beetle in dung of differing characteristics. - Entomol. Exp. Appl. 41: 83-90. Go to original source...
  46. Rodríguez-Vívas R.I., Basto-Estrella G.S., Reyes-Novelo E., Arceo-Moran A.A., Arcila-Fuentes W.R., Ojeda-Chi M.M. & Martínez I. 2020: Evaluation of the attraction, lethal and sublethal effects of the faeces of ivermectin-treated cattle on the dung beetle Digitonthophagus gazella (Coleoptera: Scarabaeidae). - Aust. Entomol. 59: 368-374. Go to original source...
  47. Saito Y., Sato T., Nomoto K. & Tsuji H. 2018: Identification of phenol- and p-cresol-producing intestinal bacteria by using media supplemented with tyrosine and its metabolites. -FEMS Microbiol. Ecol. 94: fiy125, 11 pp. Go to original source...
  48. Sharanowski B.J., Walker E.G. & Anderson G.S. 2008: Insect succession and decomposition patterns on shaded and sunlit carrion in Saskatchewan in three different seasons. - Forensic Sci. Int. 179: 219-240. Go to original source...
  49. Skidmore P. 1985: The Biology of the Muscidae of the World. Junk, Dordrecht, 550 pp.
  50. Slade E., Mann D., Villanueva J. & Lewis O. 2007: Experimental evidence for the effects of dung beetle functional group richness and composition on ecosystem function in a tropical forest. - J. Anim. Ecol. 76: 1094-1104. Go to original source...
  51. Sladecek F.X.J., Hrcek J., Klimes P. & Konvicka M. 2013: Interplay of succession and seasonality reflects resource utilization in an ephemeral habitat. - Acta Oecol. 46: 17-24. Go to original source...
  52. Sladecek F.X.J., Dötterl S., Schäffler I., Segar S.T. & Konvicka M. 2021a: Succession of dung-inhabiting beetles and flies reflects the succession of dung-emitted volatile compounds. - J. Chem. Ecol. 47: 433-443. Go to original source...
  53. Sladecek F.X.J., Zitek T., Konvicka M. & Segar T. 2021b: Evaluating the relative importance of habitat filtering and niche differentiation in shaping the food web of dung-inhabiting predators. - Acta Oecol. 112: 1-8. Go to original source...
  54. Sowig P. 1994: Resource partitioning in coprophagous beetles from sheep dung: phenology and microhabitat preferences. - Zool. Jb. Syst. 121: 171-192.
  55. Sowig P. 1997: Predation among Sphaeridium larvae: The role of starvation and size differences (Coleoptera: Hydrophilidae). - Ethol. Ecol. Evol. 9: 241-251. Go to original source...
  56. Team R.C. 2020: R: A Language and Environment for Statistical Computing. Vienna, Austria, URL: http://www.r-project.org/index.html
  57. Ter Braak C.J.F. & Smilauer P. 2012: Canoco Reference Manual and User's Guide: Software for Ordination, version 5.0. Microcomputer Power, Ithaca, NY, 496 pp.
  58. Tixier T., Lumaret J.P. & Sullivan G.T. 2015: Contribution of the timing of the successive waves of insect colonisation to dung removal in a grazed agro-ecosystem. - Eur. J. Soil Biol. 69: 88-93. Go to original source...
  59. Tonelli M., Verdú J.R., Morelli F. & Zunino M. 2020: Dung beetles: functional identity, not functional diversity, accounts for ecological process disruption caused by the use of veterinary medical products. - J. Insect Conserv. 24: 643-654. Go to original source...
  60. Valiela I. 1974: Composition, food webs and population limitation in dung arthropod communities during invasion and succession. - Am. Midl. Nat. 92: 370-385. Go to original source...
  61. van der Putten W. 2009: A multitrophic perspective on functioning and evolution of facilitation in plant communities. - J. Ecol. 97: 1131-1138. Go to original source...
  62. Vazquez G., Moreno-Casasola P. & Barrera O. 1998: Interaction between algae and seed germination in tropical dune slack species: a facilitation process. - Aquat. Bot. 60: 409-416. Go to original source...
  63. Verdú M., Rey P., Alcantara J., Siles G. & Valiente-Banuet A. 2009: Phylogenetic signatures of facilitation and competition in successional communities. - J. Ecol. 97: 1171-1180. Go to original source...
  64. Walker L., Landau F., Velazquez E., Shiels A. & Sparrow A. 2010: Early successional woody plants facilitate and ferns inhibit forest development on Puerto Rican landslides. - J. Ecol. 98: 625-635. Go to original source...
  65. Walsh G. & Posse M. 2003: Abundance and seasonal distribution of predatory coprophilous Argentine rove beetles (Coleoptera: Staphylinidae), and their effects on dung breeding flies. - Coleopt. Bull. 57: 43-50. Go to original source...
  66. Weithmann S., von Hoermann C., Schmitt T., Steiger S. & Ayasse M. 2020: The attraction of the dung beetle Anoplotrupes stercorosus (Coleoptera: Geotrupidae) to volatiles from vertebrate cadavers. - Insects 11: 476, 16 pp. Go to original source...
  67. Wickham H. 2016: ggplot2: Elegant Graphics for Data Analysis. Springer, New York, 213 pp. Go to original source...
  68. Wootton J. 1993: Size-dependent competition: effects on the dynamics vs. the end-point of mussel bed succession. - Ecology 74: 195-206. Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.