Skip to content
Publicly Available Published by De Gruyter August 7, 2018

Property (T), finite-dimensional representations, and generic representations

  • Michal Doucha EMAIL logo , Maciej Malicki and Alain Valette
From the journal Journal of Group Theory

Abstract

Let G be a discrete group with Property (T). It is a standard fact that, in a unitary representation of G on a Hilbert space , almost invariant vectors are close to invariant vectors, in a quantitative way. We begin by showing that, if a unitary representation has some vector whose coefficient function is close to a coefficient function of some finite-dimensional unitary representation σ, then the vector is close to a sub-representation isomorphic to σ: this makes quantitative a result of P. S. Wang. We use that to give a new proof of a result by D. Kerr, H. Li and M. Pichot, that a group G with Property (T) and such that C*(G) is residually finite-dimensional, admits a unitary representation which is generic (i.e. the orbit of this representation in Rep(G,) under the unitary group U() is comeager). We also show that, under the same assumptions, the set of representations equivalent to a Koopman representation is comeager in Rep(G,).

1 Introduction

Let G be a discrete group and π a unitary representation of G on some Hilbert space . For a finite set FG and ε>0, a vector ξ is (F,ε)-invariant if maxgFπ(g)ξ-ξ<ε. Recall that π almost has invariant vectors if, for every pair (F,ε), the group G has (F,ε)-vectors; and that the group G has Kazhdan’s Property (T) or is a Kazhdan group if every unitary representation of G almost having invariant vectors, has non-zero invariant vectors; see e.g. [3] for Property (T). The definition can be reformulated in terms of weak containment of representations: G has Property (T) if every unitary representation weakly containing the trivial representation of G, contains it strongly (see [3, Remark 1.1.2]). Crucial for us is an equivalent characterization due to P. S. Wang [12, Corollary 1.9 and Theorem 2.1]: the group G has Property (T) if and only if for some (hence every) irreducible finite-dimensional unitary representation σ of G, every unitary representation π of G that contains σ weakly, contains it strongly.

It is a simple but useful fact that, if G has Property (T) and π is a unitary representation almost having invariant vectors, “almost invariant vectors are close to invariant vectors”. More precisely, we have the following.

Proposition 1.1 ([3, Proposition 1.1.9]).

Let G be a Kazhdan group. If S is a finite generating set of G and ε0 is the corresponding Kazhdan constant, then for every δ]0,1[ and every unitary representation π of G, any (S,ε0δ)-invariant vector ξ satisfies ξ-Pξδξ, where P is the orthogonal projection on the subspace of π(G)-invariant vectors.

For a Kazhdan group G and a unitary representation π of G, fix a unit vector ξ and look at the coefficient function

ϕπ,ξ(g)=π(g)ξ,ξ(gG).

The question we first address in this paper is: if ϕπ,ξ is close to some coefficient of an irreducible finite-dimensional unitary representation σ of G, must ξ be close to a finite-dimensional invariant subspace of π carrying a sub-representation isomorphic to σ? We will see that, in analogy to Proposition 1.1, the answer is positive – with some care.

Definition 1.2.

Let G be a finitely generated group with a symmetric finite generating set SG containing e and let ϕ be some normalized positive definite function on G associated with a unitary irreducible representation σ, of finite dimension d. Let π be some unitary representation of G on . Let ε>0. Say that a unit vector ξ is (π,ϕ,ε)-good if for every sS2d2+1 we have |ϕπ,ξ(s)-ϕ(s)|<ε.

Note that Sk is just the ball of radius k centered at the identity in G. So there is a certain lack of uniformity in Definition 1.2: we require an approximation of ϕπ,ξ by ϕ on a ball whose size depends on the dimension of the representation d. Our main result, proved in Section 2, can be viewed as a quantitative version of Wang’s result.

Theorem 1.3.

Let G be a discrete Kazhdan group, S a finite symmetric generating set with eS, and let ϕ be a normalized positive definite function on G associated with a finite-dimensional unitary irreducible representation σ of G. For every δ]0,1[ there exists εϕ,δ>0 such that for every unitary representation π of G on a Hilbert space H, and every unit vector xH that is (π,ϕ,εϕ,δ)-good, there exists a unit vector xH with x-xδ such that the restriction of π to the span of π(G)x is isomorphic to σ.

In Section 3, we apply Theorem 1.3 to the study of the global structure of the space of unitary representations of Kazhdan groups. Let us start with the notation. Let G be an arbitrary countable group and let be a separable infinite-dimensional Hilbert space. The set Rep(G,) of all homomorphisms from G into the unitary group U() can be viewed as a closed subset of the product space U()G, when we equip U() with the strong operator topology. With this identification, Rep(G,) is a Polish (i.e. separable and completely metrizable) space. We refer the reader to the work [8], especially to the section on the spaces of unitary representations, for more information about this point of view on unitary representations. Recall that two unitary representations π1,π2Rep(G,) are isomorphic, or unitarily equivalent if there is a unitary operator ϕU() such that π1(g)=ϕπ2(g)ϕ* for every gG. Notice that this is an orbit equivalence relation given by the action of the unitary group U() on the space Rep(G,) by conjugation. Kechris raised the question (see again the section on the space of unitary representations in [8]) of whether or not there are countable groups with a generic unitary representation, where “generic” here means its conjugacy class is large in the sense of Baire category, i.e. a representation whose class under the unitary equivalence contains a dense Gδ subset. As a matter of fact, we note that it follows from the topological zero-one law that for every countable group G either there is a generic representation in Rep(G,), or all conjugacy classes are meager (see e.g. [7, Theorem 8.46]; to apply it, note that there is a dense conjugacy class in Rep(G,) – indeed, take some countable dense set of representations from Rep(G,) and consider their direct sum).

Here as an application of Theorem 1.3 we prove the following result.

Theorem 1.4.

Let G be a discrete Kazhdan group such that finite-dimensional representations are dense in the unitary dual G^. Then there is a generic unitary representation of G.

We note that, although not explicitly stated there, this result already follows from a more general result of Kerr, Li and Pichot from [9], where they prove (see Theorem 2.5 there) that if A is a separable C*-algebra where finite-dimensional representations are dense in A^, then there is a dense Gδ class in Rep(A,). Theorem 1.4 is then a special case for A=C*(G). Our proof is nevertheless done by more elementary means, in particular it does not invoke Voiculescu’s theorem (see [9, proof of Theorem 2.5] for details).

The converse of Theorem 1.4 can be also derived from [9], see Remark 3.1 below.

Another open question posed by Kechris in [8, Problem H.16] is whether the subset of those representations πRep(G,), where G is still a countable group, that are equivalent to Koopman representations, is meager in Rep(G,) or not. Such representations are called realizable by an action in [8]. Let us recall the terminology first. Let (X,μ) be a standard probability space (i.e. a space isomorphic to the unit interval [0,1] equipped with the Lebesgue measure). Let α:G(X,μ) be an action of a countable group G on X by measure-preserving measurable transformations. Consider the unitary representation πα:GL2(X,μ) defined by πα(g)f(x)=f(α(g-1,x)) for every fL2(X,μ). The Koopman representation of α is the restriction of πα to the invariant subspace L02(X,μ), which is the orthogonal complement of the invariant subspace of constant functions.

In Section 4 we prove the following result addressing the question of Kechris.

Theorem 1.5.

Let G be a discrete Kazhdan group such that finite-dimensional representations are dense in the unitary dual G^. Then the set of representations realizable by an action is comeager in Rep(G,H).

Let us record that the condition that finite-dimensional representations are dense in the unitary dual G^ is, by the result of Archbold from [1], equivalent with the statement that the full group C*-algebra C*(G) is residually finite-dimensional. That is in turn, by the result of Exel and Loring from [6] (see also [11]), equivalent with the statement that finite-dimensional representations are dense in Rep(G,), which we shall use in the proof. Note that we call a representation πRep(G,) finite-dimensional if the subalgebra π(G) generates in B() is finite-dimensional.

The existence of infinite discrete Kazhdan groups with residually finite-dimensional C*-algebras seems to be open – see [3, Question 7.10] and also Lubotzky and Shalom [10, Question 6.5] where they ask if there are infinite discrete Kazhdan groups with property FD, which is strictly stronger than having a residually finite-dimensional C*-algebra (a group has property FD if representations factoring through finite groups are dense in the unitary dual).

Question 1.6.

It is known that being residually finite is not a sufficient condition to have a residually finite-dimensional C*-algebra by a result of Bekka [2]. However how about being LERF? (Recall that a finitely generated group is LERF if any finitely generated subgroup is the intersection of the finite index subgroups containing it.) Ershov and Jaikin-Zapirain constructed in [5] a Kazhdan group which is LERF. Is its group C*-algebra residually finite-dimensional?

Remark 1.7.

We note that on the other hand we cannot exclude the possibility of proving by a different argument that for every infinite group G, all classes in Rep(G,) are meager. That would together with Theorem 1.4 give that there are no infinite Kazhdan groups with a residually finite-dimensional C*-algebra.

2 A quantitative version of Wang’s theorem

Let G be an infinite, finitely generated group. Let S be a finite, symmetric, generating set of G, with eS. Let G be the complex group ring of G.

2.1 Quantifying the Burnside theorem

Let σ be an irreducible unitary representation of dimension d, i.e. a homomorphism σ:GUd() such that σ(G) has no proper invariant subspace. The classical Burnside theorem says that σ(G)=Md(), i.e. σ(G) contains a basis of Md().

Definition 2.1.

Set k(σ)=min{k>0:dimspanσ(Sk)=d2}.

Lemma 2.2.

There is a constant C>0 (only depending on S) such that

Clogdk(σ)d2.

Proof.

We have

d2=dimspanσ(Sk(σ))|σ(Sk(σ))||Sk(σ)||S|k(σ).

Taking logarithms,

2log|S|logdk(σ).

To prove the upper bound, observe that the sequence spanσ(Sk) of subspaces of Md() is strictly increasing for k<k(σ). Indeed, assume that k is such that spanσ(Sk)=spanσ(Sk+1): this means that spanσ(Sk) is stable by left multiplication by σ(S), hence by σ(G) as S is generating. Since the identity matrix is in σ(Sk), we have

σ(G)spanσ(Sk),

hence kk(σ). From this it is clear that k(σ)d2. ∎

Let v be a unit vector in d. Since v is cyclic for σ(G), the map

Tv:Sk(σ)d,fσ(f)v

is onto. Let (kerTv) denote the orthogonal of kerTv in Sk(σ) and let Uv be the inverse of the map Tv|(kerTv). Endow Sk(σ) with the 1-norm, and let Uv21 be the corresponding operator norm of Uv. So for every w a unit vector in d, there exists fSk(σ) with f1Uv21 such that σ(f)v=w.

Lemma 2.3.

There exists M>0 such that for every two unit vectors v,wCd, there exists fCSk(σ) with f1M such that σ(f)v=w.

Proof.

This is the preceding observation plus compactness of the unit sphere in d: the constant M=maxv=1Uv21 does the job. ∎

2.2 From weak containment to weak containment à la Zimmer

Recall that, if π,ρ are unitary representations of a discrete group G, the representation π is weakly contained in the representation ρ (i.e. πρ) if every function of positive type associated with π can be pointwise approximated by finite sums of positive definite type associated with ρ. If π is irreducible, this is equivalent to requiring that every normalized function of positive type associated with π can be pointwise approximated by normalized functions of positive type associated with ρ (see [3, Proposition F.1.4]).

Zimmer introduced in [13, Definition 7.3.5] a different, inequivalent notion of weak containment. A n×n-submatrix of π is a function

GMn(),g(π(g)ei,ej)1i,jn,

where {e1,,en} is an orthonormal family in π. Say that π is weakly contained in ρ in Zimmer’s sense (i.e. πZρ) if, for every n>0, every n×n-submatrix of π can be pointwise approximated by n×n-submatrices of ρ. The exact relation with the classical notion recalled above, is worked out in [3, Remark F.1.2 (ix)]; in particular, when π is irreducible, πρ implies πZρ. Our first goal will be to make the latter statement quantitative. For this we need a definition.

Let ϕ be associated with σ, as in Definition 1.2. Let v be a unit vector in σ such that ϕ=ϕσ,v. Let e1,,ed be an orthonormal basis of d; by Lemma 2.3, we find functions f1,,fdSk(σ) with maxifi1M such that

σ(fi)v=ei(i=1,,d).

Lemma 2.4.

Let πRep(G,H) be a unitary representation. Assume that there is ε>0 and a unit vector ηH such that for sS2k(σ)+1 we have

|π(s)η,η-σ(s)v,v|<ε.

Set ηi=π(fi)η. Then for i,j=1,,d and gS,

|σ(g)ei,ej-π(g)ηi,ηj|εM2.

Proof.

For gS,

|σ(g)ei,ej-π(g)ηi,ηj|
=|σ(g)σ(fi)v,σ(fj)v-π(g)π(fi)η,π(fj)η|
=|s,tGfi(s)fj(t)¯(σ(t-1gs)v,v-π(t-1gs)η,η)|
s,tG|fi(s)||fj(s)||σ(t-1gs)v,v-π(t-1gs)η,η|.

Since the supports of the functions fi are contained in Sk(σ), and since we have t-1gsS2k(σ)+1 for s,tSk(σ), we find, using the assumption, that

|σ(g)ei,ej-π(g)ηi,ηj|εs,tG|fi(s)||fj(t)|=εfi1fj1εM2,

as desired. ∎

In the previous proof, by applying the Gram–Schmidt orthonormalization process to the ηi, it is possible to show that the d×d-submatrix (σ()ei,ej)1i,jd of σ is close on S to some d×d-submatrix of α, with an explicit bound; but we do not need that fact at this point.

2.3 Quantifying Wang’s theorem

Let σ be the (d-dimensional) Hilbert space of σ, and let σ¯ be the conjugate Hilbert space (with complex conjugate scalar multiplication and complex conjugate inner product), equipped with the conjugate representation σ¯. Form the tensor product σ¯π, carrying the representation σ¯π. Set ξi=eiηi and ξ=i=1dξiσ¯π, where the ei and ηi are as in the section above; observe that the ξi are pairwise orthogonal. We need an estimate on how ξ is moved by σ¯π:

ξ-(σ¯π)(g)ξ2=2ξ2-2Re(σ¯π)(g)ξ,ξ
=2i=1dξi2-2i,j=1dRe(σ¯π)(g)ξi,ξj
=2i=1dηi2-2i,j=1dReej,σ(g)eiπ(g)ηi,ηj.

Observe that for every gG we have

d=i,j=1dσ(g)ei,ejej,σ(g)ei

as the ei form an orthonormal basis. Subtracting and adding 2d to the previous formula, we get

ξ-(σ¯π)(g)ξ2
=2[i=1d(ηi2-1)]-2i,j=1dReej,σ(g)ei(π(g)ηi,ηj-σ(g)ei,ej)

hence, using Cauchy–Schwarz,

(2.1)

ξ-(σ¯π)(g)ξ2
2i=1d|ηi2-1|+2i,j=1d|π(g)ηi,ηj-σ(g)ei,ej|.

Theorem 1.3 will follow immediately form the next proposition, together with Lemma 2.2

Proposition 2.5.

Let G be a discrete Kazhdan group, S a finite symmetric generating set with eS, and let ϕ be a normalized positive definite function on G associated with a finite-dimensional unitary irreducible representation σ of G. For every δ]0,1[ there exists εϕ,δ>0 such that for every πRep(G,H), and every unit vector xH such that |ϕ(s)-ϕπ,x(s)|<εϕ,δ for sS2k(σ)+1, there exists a unit vector xH with x-xδ such that the restriction of π to the span of π(G)x is isomorphic to σ.

Proof.

Set d=dimσ. Let v be a unit vector in σ such that ϕ(g)=σ(g)v,v for every gG. As in Section 2.2, for an orthonormal basis e1,,ed of d, we find functions f1,,fdSk(σ) with maxifi1M such that

σ(fi)v=ei(i=1,,d).

Let 0<ε0<2 be such that (S,ε0) is a Kazhdan pair for G. Fix δ]0,1[, and set

εϕ,δ=ε=δ2ε0224d(d+1)M2.

Let πRep(G,) and let x be a unit vector with |ϕπ,x(s)-ϕ(s)|<ε for sS2k(σ)+1. Set ηi=π(fi)x. We may assume that e1=v and the function f1 is δe, so that η1=x. We want to prove that the vector

ξ=i=1d(eiηi)σ¯

is (S,tε0)-invariant for some 0<t<1, in order to apply Proposition 1.1.

For gS we have, by Lemma 2.4 and inequality (2.1),

ξ-(σ¯π)(g)ξ22dεM2+2d2εM2=2d(d+1)εM2=δ2ε0212.

Again by Lemma 2.4, evaluated at g=e, we have

|ηi2-1|εM2<12,

hence 12ηi232 and d2ξ2=i=1dηi23d2. So that, for gS,

ξ-(σ¯π)(g)ξ2δ2ε026dξ2.

By Proposition 1.1, there exists a G-fixed ξσ¯ such that

ξ-ξ2δ26dξ2.

Write ξ=i=1deiζi, so that

ξ-ξ2=i=1dηi-ζi2.

Identify σ¯ with the space of linear operators from σ to (endowed with the Hilbert–Schmidt norm), via uy(ww,uy). Then ξ identifies with the operator wi=1dw,eiζi, which is therefore an intertwining operator between σ and π. The image of this operator, which is span{ζ1,,ζd}, carries a sub-representation of π unitarily equivalent to σ (by Schur’s lemma). Set x′′=ζ1. Then

x-x′′2=η1-ζ12i=1dηi-ζi2=ξ-ξ2
δ26dξ2δ26d3d2=δ24,

i.e. x-x′′δ2. Finally, set x=x′′x′′, a unit vector in . Then by the triangle inequality,

x-xx-x′′+x′′-x=x-x′′+x′′|1-1x′′|
=x-x′′+|x′′-x|2x-x′′δ.

This concludes the proof. ∎

Question 2.6.

In the previous proof, the constant εϕ,δ depends on σ through the dimension d and the constant M from Lemma 2.3. By [12, Theorem 2.6], a discrete Kazhdan group has finitely many unitary irreducible representations of a given finite dimension (up to unitary equivalence), so Theorem 1.3 can be made uniform over all unitary irreducible representations σ with dimension less than a given dimension. Can it be made uniform over all finite-dimensional unitary representations?

3 Proof of Theorem 1.4

Let {Un} be a countable basis of open sets in the unit sphere K of , and let Φ be the set of all positive definite functions on G defining irreducible finite-dimensional representations. Notice that the set XRep(G,) of all representations π such that for every n and every δ>0 there exist m>0, xUn, xiK, ci{0}, and ϕiΦ, im, such that x=cixi, the xi are pairwise orthogonal and each xi is (π,ϕi,εϕi,δi)-good, where δi=δ|ci|.m, and εϕi,δi is given by Theorem 1.3, is a Gδ set. Indeed, for fixed n, δ, m, x, x¯=(x1,,xm), c¯=(c1,,cm), ϕ¯=(ϕ1,,ϕm) as above, the set

Vx,x¯,c¯,ϕ¯n,δ,m={πRep(G,):each xi is (π,ϕi,εϕi,δi)-good}

is clearly open. We also set Vx,x¯,c¯,ϕ¯n,δ,m to be the empty set if the xi are not pairwise orthogonal or xcixi. Now we can define X by

X=nδ+mxUnx¯Kmc¯mϕ¯ΦmVx,x¯,c¯,ϕ¯n,δ,m,

which is a Gδ condition.

Moreover, X is dense in Rep(G,) as it contains all direct sums of finite-dimensional representations, which, by our assumption, are dense in Rep(G,). This is because it is easy to see that for every such sum π there are densely many elements xK of the form cixi, where xi are pairwise orthogonal unit vectors, and each xi is (π,ϕi,δ)-good for some ϕi and every δ>0.

Now we show that every representation in X is a direct sum of finite-dimensional representations. Fix πX. Using Zorn’s lemma, we can decompose into 0 and 1 such that 0 is the direct sum of all finite-dimensional representations contained in π. For i=0,1, let Pi be the orthogonal projection of on i. Suppose that 1 is not trivial, and fix 0<δ<1, xK, pairwise orthogonal xiK and ci{0}, im, such that x=cixi, each xi is (π,ϕi,εϕi,δ|ci|.m)-good for some ϕiΦ, and x-P0x>δ (the last condition can be satisfied by choosing x in an appropriate Un): By Theorem 1.3, there exist xiK, im, inducing irreducible finite-dimensional representations, and such that

xi-xi<δ|ci|.m,

that is, x-cixi<δ. But then, clearly, xi00 for some i0m, as if this were not the case, we would get that

x-cixix-P0x>δ.

Since P1 is a G-intertwiner, the image under P1 of the linear span of π(G)xi0, is an invariant subspace of 1, which is a contradiction.

Now let X′′ be the set of all representations that contain every finite-dimensional representation with infinite multiplicity. As G is a Kazhdan group, we can see that X′′ is given by a Gδ condition. Indeed, for [σ] the isomorphism class of a finite-dimensional unitary irreducible representation of G, and n>0, let V[σ],n be the set of representations πRep(G,) such that [σ] appears in π with multiplicity at least n. Clearly, V[σ],n is open and X′′=[σ]nV[σ],n, where the intersection is countable because there are countably many [σ].

By our assumption on C*(G), the set X′′ is dense. Thus, X=XX′′ is a dense Gδ set, all the representations of which are direct sums of finite-dimensional representations, each appearing with infinite multiplicity. Clearly, all elements in X are conjugate.∎

Remark 3.1.

The converse of Theorem 1.4 also follows from [9, Theorem 2.5]. That is, if either G does not have Property (T), or C*(G) is not residually finite-dimensional, then all classes in Rep(G,) are meager. We will now prove this. By [9, Theorem 2.5], if for a separable C*-algebra A the set of isolated points in A^ is not dense, then the restriction of the action of U() by conjugation on a dense Gδ invariant subset of Rep(A,) is turbulent. That, by the definition of turbulence, in particular implies that every class in Rep(G,) is meager. Now take A=C*(G) and notice that isolated points in G^ correspond to finite-dimensional representations. Indeed, suppose that A is an arbitrary unital separable C*-algebra and πA^ is isolated. Then we can decompose A as IJ, where J^={π}. As J is a separable C*-algebra with a one-point spectrum, it is isomorphic to the compact operators on the Hilbert space π. Since A is unital, so is J, meaning that J and π are finite-dimensional. It follows that when G does not have Property (T), G^ does not have isolated points, by [12, Theorem 2.1]; when C*(G) is not residually finite-dimensional, then the isolated points in G^ are not dense by Archbold’s main result in [1].

4 Proof of Theorem 1.5

For a unitary representation π, we denote by π the 2-direct sum of countably many copies of π.

Lemma 4.1.

Let H be a locally compact group. Assume that H has (up to unitary equivalence) countably many finite-dimensional irreducible unitary representations σ1,σ2, . Then the representation n=1σn is unitarily equivalent to a Koopman representation.

Proof.

View σn as a continuous homomorphism HU(Nn). Let Kn denote the closure of σn(H) in U(Nn), so that Kn is a compact group (on which H acts by left translations by elements of σn(H)). Let mn denote normalized Haar measure on Kn, and let λn denote the regular representation of Kn on L2(Kn,mm). For p1, let Kn,p denote a copy of Kn endowed with the measure 2-n-pmn. Set X=n,pKn,p, endowed with the H-invariant probability measure

μ=n,p2-n-pmn.

Note that the H-representations on L2(X,μ) and on L02(X,μ) are equivalent, as L2(X,μ) contains the trivial representation with infinite multiplicity.

So it is enough to prove that the H-representation π on L2(X,μ) is equivalent to n=1σn. To see this, first observe that π is equivalent to nπn, where πn=λnσn. By the Peter–Weyl theorem, πn decomposes as a direct sum of finite-dimensional irreducible representations of H, hence of certain representations σk, and moreover σn is a sub-representation of πn (because the natural representation of Kn on Nn is irreducible, hence appears as a sub-representation of λn). This shows that nπn is equivalent to nσn. ∎

To prove Theorem 1.5, observe that a discrete Kazhdan group G satisfies the assumption of Lemma 4.1 (by [12, Theorem 2.6]). Let (σn)n be an enumeration of all finite-dimensional irreducible unitary representations of G. By Theorem 1.4 and its proof, the representation n=1σn has a comeager conjugacy class.

In particular, we get the following statement which was proved in [4] for finite abelian groups.

Corollary 4.2.

Let G be a finite group. Then the set of unitary representations realizable by an action is comeager in Rep(G,H).

Remark 4.3.

Kechris proves (see [8, Section (F) in Appendix H]) that, if G is torsion-free abelian, then the set of representations realizable by an action is meager in Rep(G,).


Communicated by Pierre-Emmanuel Caprace


Funding statement: The first named author was supported by the GAČR project 16-34860L and RVO: 67985840.

References

[1] R. J. Archbold, On residually finite-dimensional C*-algebras, Proc. Amer. Math. Soc. 123 (1995), no. 9, 2935–2937. 10.2307/2160599Search in Google Scholar

[2] B. Bekka, On the full C*-algebras of arithmetic groups and the congruence subgroup problem, Forum Math. 11 (1999), no. 6, 705–715. 10.1515/form.1999.021Search in Google Scholar

[3] B. Bekka, P. de la Harpe and A. Valette, Kazhdan’s Property (T), New Math. Monogr. 11, Cambridge University Press, Cambridge, 2008. 10.1017/CBO9780511542749Search in Google Scholar

[4] M. Doležal, Unitary representations of finite abelian groups realizable by an action, Topology Appl. 164 (2014), 87–94. 10.1016/j.topol.2013.12.007Search in Google Scholar

[5] M. Ershov and A. Jaikin-Zapirain, Groups of positive weighted deficiency and their applications, J. Reine Angew. Math. 677 (2013), 71–134. 10.1515/crelle.2012.013Search in Google Scholar

[6] R.  Exel and T. A.  Loring, Finite-dimensional representations of free product C*-algebras, Internat. J. Math. 3 (1992), no. 4, 469–476. 10.1142/S0129167X92000217Search in Google Scholar

[7] A. S. Kechris, Classical Descriptive Set Theory, Grad. Texts in Math. 156, Springer, New York, 1995. 10.1007/978-1-4612-4190-4Search in Google Scholar

[8] A. S. Kechris, Global Aspects of Ergodic Group Actions, Math. Surveys Monogr. 160, American Mathematical Society, Providence, 2010. 10.1090/surv/160Search in Google Scholar

[9] D. Kerr, H. Li and M. Pichot, Turbulence, representations, and trace-preserving actions, Proc. Lond. Math. Soc. (3) 100 (2010), no. 2, 459–484. 10.1112/plms/pdp036Search in Google Scholar

[10] A. Lubotzky and Y. Shalom, Finite representations in the unitary dual and Ramanujan groups, Discrete Geometric Analysis, Contemp. Math. 347, American Mathematical Society, Providence (2004), 173–189. 10.1090/conm/347/06272Search in Google Scholar

[11] V. G. Pestov and V. V. Uspenskij, Representations of residually finite groups by isometries of the Urysohn space, J. Ramanujan Math. Soc. 21 (2006), no. 2, 189–203. Search in Google Scholar

[12] P. S. Wang, On isolated points in the dual spaces of locally compact groups, Math. Ann. 218 (1975), no. 1, 19–34. 10.1007/BF01350065Search in Google Scholar

[13] R. J. Zimmer, Ergodic Theory and Semisimple Groups, Monogr. Math. 81, Birkhäuser, Basel, 1984. 10.1007/978-1-4684-9488-4Search in Google Scholar

Received: 2017-12-22
Revised: 2018-07-19
Published Online: 2018-08-07
Published in Print: 2019-01-01

© 2018 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 26.4.2024 from https://www.degruyter.com/document/doi/10.1515/jgth-2018-0030/html
Scroll to top button