Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter September 14, 2023

Robotization of conventional electrolytic process in metallography

Robotisierung eines konventionellen Elektrolyseverfahrens in der Metallographie
  • O. Ambrož

    Ondrřej Ambrož is a PhD student at BUT. After completing his master's degree in foundry technology, he was employed at the ŽĎAS steelworks as a melter-operator-metallurgist. Since 2018 he has been working at the ISI of the CAS where he is responsible for all metallographic operations and development of new methods.

    , J. Čermák

    Jan Čermák is a PhD student at BUT and member of the Microscopy for Materials Science group at ISI. As a graduate in robotics, he integrate process automation in the metallography laboratory and in current research he deals with the application of deep learning methods for AHSS microstructure classification.

    , P. Jozefovič and Š. Mikmeková
From the journal Practical Metallography

Abstract

Electrolytic polishing is a finishing method that removes material from a metal or alloy through an anodic dissolution process. Etching can often be performed in the same electrolyte by simply reducing the applied voltage to 10 percent of that required for polishing. Manufacturers of metallographic equipment present their products as automated. Only the electrolysis process itself is automated. After finishing, the sample must be immediately removed manually by the operator and cleaned. This process is critical with regard to the quality of the final sample surface and safety, because hazardous substances are often handled. The robot is placed next to an electrolytic equipment and handles all sample movements and the cleaning process in the ultrasonic bath in this experiment. The samples are made from ER308LSi austenitic stainless steel using 3D printing by Wire Arc Additive Manufacturing (WAAM). The final surface is achieved electrolytically on the commercial equipment. The aim of the experiment is to compare the microstructure, especially with regard to the possibility of distinguishing delta ferrite. The surface is characterized using various microscopic techniques. Robotization can be the key to improving surface quality and safety.

Abstract

Das elektrolytische Polieren ist ein Verfahren zur Endbearbeitung, bei dem in einem Prozess der anodischen Auflösung Material von einem Metall bzw. einer Legierung entfernt wird. Der gleiche Elektrolyt kann häufig auch zum Ätzen verwendet werden. Hierfür wird die angelegte Spannung einfach auf 10 Prozent des zum Polieren erforderlichen Werts reduziert. Hersteller von Metallographieausrüstung bezeichnen ihre Anlagen als automatisiert. Allerdings läuft lediglich die Elektrolyse selbst automatisiert ab. Unmittelbar nach der Endbearbeitung muss die Probe vom Bediener manuell entnommen und gereinigt werden. Dabei handelt es sich um einen sowohl hinsichtlich der Endoberfläche als auch bezüglich der Sicherheit kritischen Vorgang, da dabei oft mit gefährlichen Stoffen gearbeitet wird. Im Rahmen dieser Untersuchung führt das neben dem Roboter aufgestellte Gerät alle Probenbewegungen und die Reinigung im Ultraschallbad aus. Die Proben sind durch Wire Arc Additive Manufacturing (WAAM, drahtbasierte additive Fertigung im Lichtbogenverfahren) im 3D-Druck aus rostfreiem austenitischem Stahl ER308LSi gefertigt. Die Endbearbeitung der Oberfläche erfolgt elektrolytisch im handelsüblichen Gerät. Im Rahmen des Versuchs soll das Gefüge insbesondere hinsichtlich der Möglichkeit, Deltaferrit zu identifizieren, verglichen werden. Die Oberfläche wird mittels verschiedener Mikroskopieverfahren charakterisiert. Eine Robotisierung kann hier wesentlich zur Verbesserung der Oberflächenqualität und Sicherheit beitragen.

About the authors

O. Ambrož

Ondrřej Ambrož is a PhD student at BUT. After completing his master's degree in foundry technology, he was employed at the ŽĎAS steelworks as a melter-operator-metallurgist. Since 2018 he has been working at the ISI of the CAS where he is responsible for all metallographic operations and development of new methods.

J. Čermák

Jan Čermák is a PhD student at BUT and member of the Microscopy for Materials Science group at ISI. As a graduate in robotics, he integrate process automation in the metallography laboratory and in current research he deals with the application of deep learning methods for AHSS microstructure classification.

References / Literatur

[1] Ganti, S.; Turner, B.; Kirsch, M.; Anthony, D.; McKoy, B.; Trivedi, H.; Sundar, V.: Three-dimensional (3D) analysis of white etching bands (WEBs) in AISI M50 bearing steel using automated serial sectioning Mater. Charact. 138 (2018), pp. 11–18. DOI:10.1016/j.matchar.2018.01.01010.1016/j.matchar.2018.01.010Search in Google Scholar

[2] Ganti, S.; Velez, M.; Geier, B.; Hayes, B.; Turner, B.; Jenkins, E.: A Comparison of Porosity Analysis Using 2D Stereology Estimates and 3D Serial Sectioning for Additively Manufactured Ti 6Al 2Sn 4Zr 2Mo Alloy Pract. Metallogr. 54 (2017), pp. 77–94. DOI: 10.3139/147.11043210.3139/147.110432Search in Google Scholar

[3] Turner, B.; Ganti, S.; Davis, B.; Sundar, V.: Automated Optical Serial Sectioning Analysis of Phases in a Medium Carbon Steel, Characterization of Minerals, Metals, and Materials 2018, Springer, Cham, Switzerland, 2018, pp. 453–459. DOI: 10.1007/978-3-319-72484-3_4710.1007/978-3-319-72484-3_47Search in Google Scholar

[4] Vander Voort, G.: Metallography, principles and practice, ASM International, Materials Park, Ohio, United States, 1999, pp. 177–178.Search in Google Scholar

[5] Ambrož, O.; Čermák, J.; Mikmeková, Š.: Apparatus for automatic chemical etching of metallographic samples, in: Proc. 30th METAL Conf., Brno, Czech Republic, 2021. DOI: 10.37904/metal.2021.414610.37904/metal.2021.4146Search in Google Scholar

[6] Ambrož, O.; Čermák, J.; Jozefovič, P.; Mikmeková, Š.: Automation of Metallographic Sample Etching Process Defect Diffus. Forum 423 (2023), pp. 113–118. DOI: 10.4028/p-s347g910.4028/p-s347g9Search in Google Scholar

[7] Ambrož, O.; Čermák, J.; Jozefovič, P.; Mikmeková, Š.: Automated color etching of aluminum alloys Pract. Metallogr. 59 (2022), S. 459–474. DOI: 10.1515/pm-2022-101410.1515/pm-2022-1014Search in Google Scholar

Received: 2023-07-24
Accepted: 2023-08-03
Published Online: 2023-09-14
Published in Print: 2023-09-26

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 2.5.2024 from https://www.degruyter.com/document/doi/10.1515/pm-2023-1056/html
Scroll to top button