Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter July 2, 2021

On cellulose spatial organization and interactions as unraveled by diffraction and spectroscopic methods throughout the 20th century

  • Adriana Šturcová EMAIL logo

Abstract

This contribution attempts to describe the path towards determination of cellulose crystal structure down to atomic coordinates, towards the determination of its molecular conformation, as well as towards the details of the intricate pattern of hydrogen bonds and their dynamics. This path started at the beginning of the 20th century with X-ray diffraction, continued with electron diffraction, infrared and Raman spectroscopy, and significant knowledge was gained by methods of NMR spectroscopy. Towards the end of the 20th century and at the beginning of the 21st century, X-ray diffraction in conjunction with neutron diffraction provided the position of hydrogens, which led to detailed description of the geometry of hydrogen bonding network in cellulose. Quantum chemical and molecular dynamics calculations, polarized infrared spectroscopy and sum frequency generation vibrational spectroscopy were used to identify the origins of the vibrational modes in cellulose and to describe their extensive coupling mediated by hydrogen bonds. The role of amphiphilic character of cellulose macromolecule (and consequent hydrophobic interactions) in cellulose properties and behavior has been gaining more recognition in the 21st century.


Corresponding author: Adriana Šturcová, Institute of Macromolecular Chemistry CAS, Heyrovského nám. 2, 162 06 Prague, Czech Republic, e-mail:

Article note: A collection of invited papers from members of the IUPAC Polymer Division Celebrating a Centenary of Macromolecules.


Funding source: Institutional Support

Award Identifier / Grant number: RVO 61389013

References

[1] O. M. Astley, E. Chanliaud, A. M. Donald, M. J. Gidley. Int. J. Biol. Macromol. 29, 193 (2001), https://doi.org/10.1016/s0141-8130(01)00167-2.Search in Google Scholar

[2] A. Šturcová, I. His, D. C. Apperley, J. Sugiyama, M. C. Jarvis. Biomacromolecules 5, 1333 (2004).10.1021/bm034517pSearch in Google Scholar PubMed

[3] N. C. Carpita, D. M. Gibeaut. Plant J. 3, 1 (1993), https://doi.org/10.1111/j.1365-313x.1993.tb00007.x.Search in Google Scholar PubMed

[4] C. T. Brett, K. W. Waldron. Physiology and Biochemistry of Plant Cell Walls, Chapman & Hall, London, 2nd ed. (1996).Search in Google Scholar

[5] A. Šturcová, G. R. Davies, S. J. Eichhorn. Biomacromolecules 6, 1055 (2005).10.1021/bm049291kSearch in Google Scholar PubMed

[6] R. Rinaldi. Chem. Commun. 47, 511 (2011), https://doi.org/10.1039/c0cc02421j.Search in Google Scholar PubMed

[7] C. M. Lee, J. D. Kubicki, B. Fan, L. Zhong, M. C. Jarvis, S. H. Kim. J. Phys. Chem. B 119, 15138 (2015), https://doi.org/10.1021/acs.jpcb.5b08015.Search in Google Scholar PubMed

[8] R. J. Viëtor, R. H. Newman, M.-A. Ha, D. C. Apperley, M. C. Jarvis. Plant J. 30, 721 (2002), https://doi.org/10.1046/j.1365-313x.2002.01327.x.Search in Google Scholar PubMed

[9] D. L. VanderHart, R. H. Atalla. Macromolecules 17, 1465 (1984), https://doi.org/10.1021/ma00138a009.Search in Google Scholar

[10] Y. Nishiyama, J. Sugiyama, H. Chanzy, P. Langan. J. Am. Chem. Soc. 125, 14300 (2003), https://doi.org/10.1021/ja037055w.Search in Google Scholar PubMed

[11] Y. Nishiyama, P. Langan, H. Chanzy. J. Am. Chem. Soc. 124, 9074 (2002), https://doi.org/10.1021/ja0257319.Search in Google Scholar PubMed

[12] X. Qian, S.-Y. Ding, M. R. Nimlos, D. K. Johnson, M. E. Himmel. Macromolecules 38, 10580 (2005), https://doi.org/10.1021/ma051683b.Search in Google Scholar

[13] A. D. French, M. Concha, M. K. Dowd, E. D. Stevens. Cellulose 21, 1051 (2014), https://doi.org/10.1007/s10570-013-0042-0.Search in Google Scholar

[14] M. C. Jarvis. Carbohydr. Res. 325, 150 (2000), https://doi.org/10.1016/s0008-6215(99)00316-x.Search in Google Scholar

[15] B. Lindman, B. Medronho, A. Romano, M. G. Miguel, L. Stigsson. Cellulose 19, 581 (2012).10.1007/s10570-011-9644-6Search in Google Scholar

[16] P. Langan, Y. Nishiyama, H. Chanzy. Biomacromolecules 2, 410 (2001), https://doi.org/10.1021/bm005612q.Search in Google Scholar PubMed

[17] P. Zugenmaier. Carbohydr. Polym. 254, 117417 (2021).10.1016/j.carbpol.2020.117417Search in Google Scholar PubMed

[18] S. Nishikawa, S. Ono. Proc. Tokyo Math. Phys. Soc. 7, 131 (1913).Search in Google Scholar

[19] A. W. Hull. Phys. Rev. 10, 661 (1917), https://doi.org/10.1103/physrev.10.661.Search in Google Scholar

[20] P. H. Hermans. Physics and Chemistry of Cellulose Fibres, p. 5, Elsevier, New York (1949).Search in Google Scholar

[21] P. Scherrer. In private communication to H. Ambronn in 1919 as described by P. H. Hermans Physics and Chemistry of Cellulose Fibres, p. 5, Elsevier, New York (1949).Search in Google Scholar

[22] K. H. Meyer, H. Mark. Ber. Dtsch. Chem. Ges. 61, 593 (1928), https://doi.org/10.1002/cber.19280610402.Search in Google Scholar

[23] K. H. Meyer, L. Misch. Helv. Chim. Acta 20, 232 (1937), https://doi.org/10.1002/hlca.19370200134.Search in Google Scholar

[24] G. Honjo, M. Watanabe. Nature 181, 326 (1958), https://doi.org/10.1038/181326a0.Search in Google Scholar

[25] H. J. Marrinan, J. Mann. J. Polym. Sci. 21, 301 (1956), https://doi.org/10.1002/pol.1956.120219812.Search in Google Scholar

[26] J. Mann, H. J. Marrinan. J. Polym. Sci. 32, 357 (1958), https://doi.org/10.1002/pol.1958.1203212507.Search in Google Scholar

[27] C. Y. Liang, R. H. Marchessault. J. Polym. Sci. 37, 385 (1959), https://doi.org/10.1002/pol.1959.1203713209.Search in Google Scholar

[28] A. Sarko, R. Muggli. Macromolecules 7, 486 (1974), https://doi.org/10.1021/ma60040a016.Search in Google Scholar

[29] K. H. Gardner, J. Blackwell. Biopolymers 13, 1975 (1974), https://doi.org/10.1002/bip.1974.360131005.Search in Google Scholar

[30] A. D. French, P. S. Howley. in Cellulose and Wood, Chemistry and Technology, C. Schuerch (Ed.), pp. 159–167, Wiley, New York (1989).Search in Google Scholar

[31] M. Koyama, W. Helbert, T. Imai, J. Sugiyama, B. Henrissat. Proc. Natl. Acad. Sci. U.S.A. 94, 9091 (1997), https://doi.org/10.1073/pnas.94.17.9091.Search in Google Scholar

[32] P. S. Belton, S. F. Tanner, N. Cartier, H. Chanzy. Macromolecules 22, 1615 (1989), https://doi.org/10.1021/ma00194a019.Search in Google Scholar

[33] H. Chanzy, B. Henrissat, M. Vincendon, S. F. Tanner, P. S. Belton. Carbohydr. Res. 160, 1 (1987), https://doi.org/10.1016/0008-6215(87)80299-9.Search in Google Scholar

[34] A. Hirai, F. Horii, R. Kitamaru. Macromolecules 20, 1440 (1987), https://doi.org/10.1021/ma00172a057.Search in Google Scholar

[35] F. Horii, H. Yamamoto, R. Kitamura, M. Tanahashi, T. Higuchi. Macromolecules 20, 2946 (1987), https://doi.org/10.1021/ma00177a052.Search in Google Scholar

[36] H. Yamamoto, F. Horii, H. Odani. Macromolecules 22, 4132 (1989), https://doi.org/10.1021/ma00200a058.Search in Google Scholar

[37] J. Sugiyama, T. Okano, H. Yamamoto, F. Horii. Macromolecules 23, 3198 (1990), https://doi.org/10.1021/ma00214a029.Search in Google Scholar

[38] A. Michell. Carbohydr. Res. 197, 53 (1990), https://doi.org/10.1016/0008-6215(90)84129-i.Search in Google Scholar

[39] A. Michell. Carbohydr. Res. 241, 47 (1993), https://doi.org/10.1016/0008-6215(93)80093-t.Search in Google Scholar

[40] J. Sugiyama, J. Persson, H. Chanzy. Macromolecules 24, 2461 (1991), https://doi.org/10.1021/ma00009a050.Search in Google Scholar

[41] J. Sugiyama, R. Vuong, H. Chanzy. Macromolecules 24, 4168 (1991), https://doi.org/10.1021/ma00014a033.Search in Google Scholar

[42] H. Kono, S. Yunoki, T. Shikano, M. Fujiwara, T. Erata, M. Takai. J. Am. Chem. Soc. 124, 7506 (2002), https://doi.org/10.1021/ja010704o.Search in Google Scholar

[43] N. Ivanova, E. Korolenko, E. Korolik, R. Zhbankov. J. Appl. Spectrosc. 51, 847 (1989), https://doi.org/10.1007/bf00659967.Search in Google Scholar

[44] Y. Maréchal, H. Chanzy. J. Mol. Struct. 523, 183 (2000), https://doi.org/10.1016/s0022-2860(99)00389-0.Search in Google Scholar

[45] P. Langan, Y. Nishiyama, H. Chanzy. J. Am. Chem. Soc. 121, 9940 (1999), https://doi.org/10.1021/ja9916254.Search in Google Scholar

[46] A. Šturcová, I. His, T. J. Wess, G. Cameron, M. C. Jarvis. Biomacromolecules 4, 1589 (2003).10.1021/bm034295vSearch in Google Scholar PubMed

[47] J. Yang, L. A. Christianson, S. H. Gellman. Org. Lett. 1, 11 (1999), https://doi.org/10.1021/ol9900010.Search in Google Scholar

[48] J. Yang, S. H. Gellman. J. Am. Chem. Soc. 120, 9090 (1998), https://doi.org/10.1021/ja981604u.Search in Google Scholar

[49] D. A. Braden, G. L. Gard, T. J. R. Weakley. Inorg. Chem. 35, 1912 (1996), https://doi.org/10.1021/ic951315w.Search in Google Scholar

[50] E. S. Feldblum, I. T. Arkin. Proc. Natl. Acad. Sci. Unit. States Am. 111, 4085 (2014), https://doi.org/10.1073/pnas.1319827111.Search in Google Scholar PubMed PubMed Central

[51] P. Yang, P. P. N. Murthy, R. E. Brown. J. Am. Chem. Soc. 127, 15848 (2005), https://doi.org/10.1021/ja053371u.Search in Google Scholar PubMed

[52] J. T. Ham, D. G. Williams. Acta Crystallogr. B26, 1373 (1970), https://doi.org/10.1107/s0567740870004132.Search in Google Scholar

[53] W. G. Glasser, R. H. Atalla, J. Blackwell, R. M. BrownJr., W. Burchard, A. D. French, D. O. Klemm, Y. Nishiyama. Cellulose 19, 589 (2012), https://doi.org/10.1007/s10570-012-9691-7.Search in Google Scholar

[54] R. Parthasarathi, G. Bellesia, S. P. S. Chundawat, B. E. Dale, P. Langan, S. Gnanakaran. J. Phys. Chem. 115, 14191 (2011), https://doi.org/10.1021/jp203620x.Search in Google Scholar PubMed

Published Online: 2021-07-02
Published in Print: 2021-10-26

© 2021 IUPAC & De Gruyter. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. For more information, please visit: http://creativecommons.org/licenses/by-nc-nd/4.0/

Downloaded on 1.5.2024 from https://www.degruyter.com/document/doi/10.1515/pac-2021-0306/html
Scroll to top button