Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-18T22:58:56.524Z Has data issue: false hasContentIssue false

3 - Major Scientific Contributions of the International Association of Geomagnetism and Aeronomy (IAGA) during the Past 100 Years

from Part I - Introduction

Published online by Cambridge University Press:  25 October 2019

Mioara Mandea
Affiliation:
Centre National d'études Spatiales, France
Monika Korte
Affiliation:
GeoforschungsZentrum, Helmholtz-Zentrum, Potsdam
Andrew Yau
Affiliation:
University of Calgary
Eduard Petrovsky
Affiliation:
Academy of Sciences of the Czech Republic, Prague
Get access

Summary

We review the progress in geomagnetic research for the century preceding the founding of IAGA’s predecessor in 1919. We then discuss the contributions of IAGA to the development of the study of geomagnetism and aeronomy during the past 100 years, as illustrated by the marked expansion in the number and geographic coverage of magnetic observatories. IAGA has led efforts to develop geomagnetic indices, reference fields, magnetic anomaly maps, and to rapidly distribute magnetic data. It played a key role in the establishment of aeronomy as a separate scientific discipline. IAGA has fostered the coordination of paleomagnetic data bases and was an early advocate of the investigation of Sun-Earth relationships. IAGA flagship efforts since 1919 years include support to the highly-successful International Geophysical Year (IGY) in 1957–1958 and more recently to the IGY 50th-year commemorative programs of the International Heliophysical Year (IHY) and Electronic Geophysical Year (eGY).

Type
Chapter
Information
Geomagnetism, Aeronomy and Space Weather
A Journey from the Earth's Core to the Sun
, pp. 30 - 38
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akasofu, S.-I., Fogle, B. and Haurwitz, B. (Eds), 1968. Sidney Chapman, Eighty. University of Colorado Press, Boulder, pp. 2730, 31–4, 35–8, 3941.Google Scholar
Anonymous [IAGA-IQSY Committees], 1963. IAGA Newsletter 1, pp. 1720.Google Scholar
Anonymous, 1969a. International Geomagnetic Reference Field 1965.0: IAGA Commission 2 Working Group 4, Analysis of the geomagnetic field. J. Geophys. Res., 74, 4407–8. doi: 10.1029/JB074i017p04407.Google Scholar
Anonymous, 1969b. International Geomagnetic Reference Field 1965.0. J. Geomagn. Geoelectr., 21, 569–71.Google Scholar
Appleton, E. V. and Barnett, M. A. F., 1925. On some direct evidence for downward atmospheric reflection of electric rays. Proc. Royal Soc. London. Series A, 109, 621–41.Google Scholar
Arneitz, P., Leonhardt, R., Schnepp, E., et al., 2017. The HISTMAG database: combining historical, archaeomagnetic and volcanic data. Geophys. J. Int., 210, 1347–59. doi: 10.1093/gji/ggx245.Google Scholar
As, J. A. and Zijderveld, J. D. A., 1958. Magnetic cleaning of rocks in palaeomagnetic research. Geophys. J. R. Astron. Soc., 1, 308–19.Google Scholar
Biggin, A. J., McCormack, A. and Roberts, A., 2010. Paleointensity database updated and upgraded. Eos Trans. AGU, 91(2), 15. doi: 10.1029/2010EO020003.Google Scholar
Birkeland, K., 1901. Expédition Norvegienne de 1899–1900. Résultats magnétiques. Vidensk Skrifter, 1. Mat. naturv. Kl.Google Scholar
Birkeland, K., 1908. The Norwegian Aurora Polaris Expedition, 1902–1903, vol. 1, section 1, H. Aschehoug, Oslo.Google Scholar
Bullard, E. C., 1949a. The magnetic field within the Earth. Proc. R. Soc. London, Ser. A, 197, 433–53.Google Scholar
Bullard, E. C., 1949b. Electromagnetic induction in a rotating sphere. Proc. R. Soc. London, Ser. A, 199, 413–43.Google Scholar
Busse, F. H., 1978. Magnetohydrodynamics of the Earth’s dynamo. Ann. Rev. Fluid. Mech., 10, 435–62.Google Scholar
Carrington, R. C., 1860. Description of a singular appearance seen in the Sun on September 1, 1859. Mon. Not. R. Astron. Soc., 20, 1315.Google Scholar
Cawood, J., 1979. The magnetic crusade: science and politics in early Victorian Britain. Isis, 70, 493518.CrossRefGoogle Scholar
Chamberlain, J. W., 1989. Aeronomy: The word. Eos Trans. AGU, 70, 1544.Google Scholar
Chapman, S., 1918. An outline of a theory of magnetic storms. Proc. R. Soc. London, Ser. A, 97, 6183.Google Scholar
Chapman, S., 1931a. The absorption and dissociative or ionizing effect of monochromatic radiation in an atmosphere on a rotating earth. Proc. Phys. Soc., 43, 2645.Google Scholar
Chapman, S., 1931b. The absorption and dissociative or ionizing effect of monochromatic radiation in an atmosphere on a rotating earth part II. Grazing incidence. Proc. Phys. Soc. 43, 483501.Google Scholar
Chapman, S., 1938. Geomagnetism or terrestrial magnetism? Terr. Magn. Atmos. Electr., 43, 321.Google Scholar
Chapman, S., 1946. Some thoughts on nomenclature. Nature, 157, 405.Google Scholar
Chapman, S., 1953. Nomenclature in meteorology. Weather, 7–8, 62.Google Scholar
Chapman, S. and Ferraro, V. C. A., 1931a. A new theory of magnetic storms. Terr. Magn. Atmos. Electr., 36, 7797.Google Scholar
Chapman, S. and Ferraro, V. C. A., 1931b. A new theory of magnetic storms, Part I – The initial phase (continued). Terr. Magn. Atmos. Electr., 36, 171–86.Google Scholar
Chapman, S. and Ferraro, V. C. A., 1933. A new theory of magnetic storms, Part II – The main phase. Terr. Magn. Electr., 38, 7996.Google Scholar
Cliver, E. W., 1994a. Solar activity and geomagnetic storms: the first 40 years. Eos Trans. AGU, 75, 569, 574–5.Google Scholar
Cliver, E. W., 1994b. Solar activity and geomagnetic storms: the corpuscular hypothesis. Eos Trans. AGU, 75, 609, 612–13.Google Scholar
Cliver, E. W., 1995. Solar activity and geomagnetic storms, From M regions and flares to coronal holes and CMEs. Eos Trans. AGU, 76, 75, 83.Google Scholar
Coulomb, J., 1982. From IATME to IAGA (1951–1954). IAGA News, 21, 114–16.Google Scholar
Courtillot, V. and le Mouël, J. L., 2007. The study of Earth’s magnetism (1269–1950): a foundation by Peregrinus and subsequent development of geomagnetism and paleomagnetism. Rev. Geophys., 45, RG3008. doi: 10.1029/2006RG000198.Google Scholar
Cowling, T. G., 1934. The magnetic field of sunspots. Mon. Not. R. Astron. Soc., 94, 3248.Google Scholar
Dunlop, D. J., 2011. Physical basis of the Thellier-Thellier and related paleointensity methods. Phys. Earth Planet. Inter., 187, 118–38. doi: 10.1016/j.pepi.2011.03.006.CrossRefGoogle Scholar
Elsasser, W., 1939. On the origin of the Earth’s magnetic field. Phys. Rev., 60, 876–83.Google Scholar
Finlay, C. C., Maus, S., Beggan, C. D., et al., 2010. International Geomagnetic Reference Field: the eleventh generation. Geophys. J. Int., 183, 1216–30. doi: 10.1111/j.1365-246X.2010.04804.x.Google Scholar
Fitzgerald, G. F., 1892. Sunspots and magnetic storms. The Electrician, 30, 48.Google Scholar
FitzGerald, G. F., 1900. Sunspots, magnetic storms, comet tails, atmospheric electricity, and aurorae. The Electrician, 46, 287–8.Google Scholar
Fritz, H., 1881. Das Polarlicht. Brockhaus, Leipzig.Google Scholar
Fukushima, N., 1994. Some topics and historical episodes in geomagnetism and aeronomy. J. Geophys. Res., 99, 19113–42.Google Scholar
Fukushima, N., 1995. History of the International Association of Geomagnetism and Aeronomy (IAGA). IUGG Chronicle, 226, 7387.Google Scholar
Gailitis, A., Lielausis., O., Dementev, S., et al., 2000. Detection of a flow induced magnetic field eigenmode in the Riga dynamo facility. Phys. Rev. Lett., 84, 4365–8. doi: 10.1103/PhysRevLett.84.4365.Google Scholar
Garland, G. D., 1979. The contributions of Carl Friedrich Gauss to geomagnetism. Historia Mathematica, 6, 529.Google Scholar
Gautier, A., 1852. Relation entre les taches du Soleil et les phénomènes magnétiques. Arch. Sci., 21, 194–5.Google Scholar
Gilbert, W., 1600. De Magnete. Excudebat Petrus Short, London. (English translation by P. Fleury Mottelay, Dover, Mineola, New York, 1958.)Google Scholar
Glatzmeir, G. H. and Roberts, P. H., 1995a. A 3-dimensional self-consistent computer-simulation of a geomagnetic-field reversal. Nature, 377, 203–9. doi: 10.1038/377203a0.Google Scholar
Glatzmeir, G. H. and Roberts, P. H., 1995a. A 3-dimensional convective dynamo solution with rotating and finitely conducting inner-core and mantle. Phys. Earth Planet. Inter., 91, 6375. doi: 10.1016/0031-9201(95)03049-3.Google Scholar
Heaviside, O., 1902. Telegraphy. I. Theory. In: Encyclopedia Britannica, 10th ed., pp. 213–18.Google Scholar
Hemant, K., Thébault, E., Mandea, M., Ravat, D. and Maus, S., 2007. Magnetic anomaly map of the world: merging satellite, airborne, marine and ground-based magnetic data sets. Earth Planet. Sci. Lett., 260, 1–2, 5671.Google Scholar
Hodgson, R., 1860. On a curious appearance seen in the Sun. Mon. Not. Roy. Astron. Soc., 20, 15.CrossRefGoogle Scholar
Ismail-Zadeh, A., 2016. Geoscience international: the role of scientific unions. Hist. Geo. Space Sci., 7, 103–23.Google Scholar
Jelinek, V., 1981. Characterization of the magnetic fabric of rocks. Tectonophysics, 79, T63–7. doi: 10.1016/0040-1951(81)90110-4.CrossRefGoogle Scholar
Kaplan, J., 1977. The aeronomy story: a memoir. In: Washington Essays on the History of Rocketry and Astronautics, vol. 2, Hall, R. C. (Ed). NASA, Hampton, VA. pp. 423–7.Google Scholar
Kennelly, A. E., 1902. On the elevation of the electrical conducting strata of the Earth’s atmosphere. Elec. World. Eng., 39, 473.Google Scholar
Kerridge, D. J., 2001. INTERMAGNET: World-wide near real-time geomagnetic observatory data, paper presented at Space Weather Workshop: Looking towards a European Space Weather Programme, Eur. Space Res. and Technol. Cent., Noordwijk, Netherlands, 17–19 Dec. Available at www.esa-spaceweather.net/spweather/workshops/SPW_W3/index.html.Google Scholar
Kerridge, D., 2007. IAGA, International Association of Geomagnetisim and Aeronomy. In: Encyclopedia of Geomagnetism and Paleomagnetism, Gubbins, D. and Herrero-Bervera, E. (Eds). Springer, Dordrecht, pp. 407–8.Google Scholar
Koppers, A. A. P., Minnett, R., Tauxe, L. and Constable, C., 2010. MagIC database: comprehensive archiving and visualization of rock- and paleomagnetic data using Web 2.0 technology. Geochim. Cosmochim. Acta, 74, A531.Google Scholar
Korhonen, J. V., Fairhead, J. D., Hamoudi, M., Hemant, K., Lesur, V., Mandea, M., Maus, S., Purucker, M., Ravat, D., Sazonova, T. and Thébault, E., 2007. Magnetic Anomaly Map of the World. Geological Survey of Finland, Espoo.Google Scholar
Larmor, J., 1919. How could a rotating body like the Sun become a magnet? Rep. Br. Assoc. Adv., pp. 159–60.Google Scholar
Laursen, V., 1984. IATME and the second international polar year. IAGA Newsletter, 22, 104–8.Google Scholar
Lesur, V., Hamoudi, M., Choi, Y., Dyment, J. and Thébault, E., 2016. Building the second version of the World Digital Magnetic Anomaly Map (WDMAM). Earth Planets Space, 68, 27. doi: 10.1186/s40623-016-0404-6.Google Scholar
Lincoln, J. V., 1967. Geomagnetic indices. In: Physics of Geomagnetic Phenomena, vol. 1, Matsushita, S. and Campbell, W. H. (Eds). Academic Press, New York, pp. 67100.Google Scholar
Lindemann, F. A., 1919. Note on the theory of magnetic storms. Philos. Mag., 38, 669.Google Scholar
Loomis, E., 1860. The great auroral exhibition of August 28 to September 4, 1859, and the geographical distribution of auroras and thunder storms. Am. J. Sci., 2, 30, 79100.Google Scholar
Love, J. J. and Chulliat, A., 2013. An international network of magnetic observatories, Eos Trans. AGU, 94, 42, 373–4.Google Scholar
Love, J. J. and Remick, K. J., 2007. Magnetic indices. In: Encyclopedia of Geomagnetism and Paleomagnetism, Gubbins, D. and Herrero-Bervera, E. (Eds). Springer, Dordrecht, pp. 509–12.Google Scholar
Maunder, E. W., 1904. Magnetic disturbances, 1882 to 1903, as recorded at the Royal Observatory, Greenwich, and their association with sun-spots. Mon. Not. Roy. Astron. Soc., 65, 234.Google Scholar
Maus, S., 2010. An ellipsoidal harmonic representation of earth’s lithospheric magnetic field to degree and order 720. Geochem Geophys Geosyst., 11, Q06015. doi: 10.1029/2010GC003026.Google Scholar
Maus, S., Barckhausen, U., Berkenbosch, H., et al., 2009. EMAG2: a 2–arcmin resolution earth magnetic anomaly grid compiled from satellite, airborne, and marine magnetic measurements. Geochem. Geophys. Geosyst., 10, Q08005. doi: 10.1029/2009GC002471.Google Scholar
Mayaud, P. N., 1980. Derivation, Meaning, and Use of Geomagnetic Indices. American Geophysical Union, Washington, DC.Google Scholar
McElhinny, M. W. and Lock, J., 1990a. IAGA global paleomagnetic database. Geophys. J. Int., 101, 763–6. doi: 10.1111/j.1365-246X.1990.tb05582.x.CrossRefGoogle Scholar
McElhinny, M. W. and Lock, J., 1990b. Global paleomagnetic database project. Phys. Earth Planet. Inter., 63, 16. doi: 10.1016/0031-9201(90)90053-Z.CrossRefGoogle Scholar
McElhinny, M. W. and Lock, J., 1993. Global paleomagnetic database supplement number one – update to 1992. Surv. Geophys., 14, 303–29. doi: 10.1007/BF00690947.Google Scholar
McElhinny, M. W. and Lock, J., 1996. IAGA paleomagnetic databases with access. Surv. Geophys., 17, 575–91. doi: 10.1007/BF01888979.Google Scholar
Menvielle, M., Iyemori, T., Marchaudon, A. and Nosé, M., 2011. Geomagnetic indices. In: Geomagnetic Observations and Models, Mandea, M. and Korte, M. (Eds). Springer, Dordrecht, p. 204.Google Scholar
Mercanton, P. L. 1926. Inversion de l’inclinaison magnétique terrestre aux ages géologiques. J. Geophys. Res., 31, 187–90.Google Scholar
Merlin, E., Somville, O., 1910. Liste des observatoires magnétiques et des observatoires séismologiques. Observatoire Royal de Belgique, Bruxelles.Google Scholar
Muller, U. and Stieglitz, R., 2000. Can the Earth’s magnetic field be simulated in the laboratory? Naturwissenschaften, 87, 381390, DOI: 10.1007/s001140050746.Google Scholar
Muller, U. and Stieglitz, R., 2002. The Karlsruhe dynamo experiment. Nonlin. Process. Geophys., 9, 165–70.Google Scholar
Nagy, A. F., 2008. Preface (to Comparative Aeronomy). Space Sci. Rev., 139, 12.Google Scholar
Needham, J., 1962. Science and Civilisation in China, Vol. 4, Physics and Physical Technology, Part 1, Physics. Cambridge University Press, New York.Google Scholar
Peddie, N. W., 1983. International Geomagnetic Reference Field – its evolution and the difference in total field intensity between new and old models for 1965–1980. Geophysics, 48, 1691–6. doi: 10.1190/1.1441450.Google Scholar
Perrin, M. and Schnepp, E., 2004. IAGA paleointensity database: distribution and quality of the data set. Phys. Earth Planet. Inter., 147, 255–67. doi: 10.1016/j.pepi.2004.06.005.Google Scholar
Radler, K. H., 2014. Mean-field dynamos: the old concept and some recent developments Karl Schwarzschild Award Lecture 2013. Astro. Nachr., 335, 459–69. doi: 10.1002/asna.201412055.Google Scholar
Roberts, P. H. and King, E. M., 2013. On the genesis of the Earth’s magnetism. Rep. Prog. Phys., 76, 096801. doi: 10.1088/0034-4885/76/9/096801.Google Scholar
Sabine, E., 1852. On periodical laws discoverable in the mean effects of the larger magnetic disturbances. Philos. Trans., 142, 103–24.Google Scholar
Schwabe, S. H., 1844. Solar observations during 1843. Astron. Nach., 21, 495.Google Scholar
Smith, P. J. and Needham, J., 1967. Magnetic declination in Mediaeval China. Nature, 214, 1213–14. doi: 10.1038/2141213b0.Google Scholar
St. Louis, B., 2011. INTERMAGNET Technical Reference Manual, version 4.5. British Geological Survey, Edinburgh.Google Scholar
Steenbeck, M., Kirko, I. M., Gailitis, A., Klawina, A. P., Krause, F., Laumanis, I. J. and Lielausis, O. A., 1967. Der experimentelle Nachweis einer elektromotorischen Kraftlängs einesäußeren Magnetfeldes, induziert durch eine Strömung flüssigen Metalls (α-Effekt). Mber. Dtsch. Akad. Wiss. Berlin, 9, 714–19.Google Scholar
Steenbeck, M., Kirko, I. M., Gailitis, A., Klyavinya, A. P., Krause, F., Laumanis, I. Ya. and Lielausis, O. A., 1968. Experimental discovery of the electromotive force along the external magnetic field induced by a flow of liquid metal (α-effect). Soviet Phys. Dokl., 13, 443–5.Google Scholar
Stern, D. P., 1989. A brief history of magnetospheric physics before the spaceflight era. Rev. Geophys., 27, 103–14.Google Scholar
Stewart, B., 1861. On the great magnetic disturbance which extended from August 28 to September 7, 1859, as recorded by photography at Kew Observatory. Philos. Trans., 151, 423–30.Google Scholar
Stewart, B., 1883. Terrestrial magnetism. In: Encyclopedia Britannica, 9th ed., 16, pp. 159–84.Google Scholar
Stieglitz, R. and Muller, U., 2001. Experimental demonstration of a homogeneous two-scale dynamo. Phys. Fluids, 13, 561–4. doi: 10.1063/1.1331315.Google Scholar
Tauxe, L., 2010. The MagIC Database: Essentials of Paleomagnetism. University of California Press, Oakland, pp. 391–5.Google Scholar
Thébault, E., Finlay, C. C., Beggan, C. D., et al., 2015a. International Geomagnetic Reference Field: the 12th generation. Earth Planets Space, 67, 79. doi: 10.1186/s40623-015-0228-9.Google Scholar
Thébault, E., Finlay, C. C. and Toh, H., 2015b. Preface to special issue ‘International Geomagnetic Reference Field – the twelfth generation’. Earth Planets Space, 67, 158. doi: 10.1186/s40623-015-0313-0.Google Scholar
Thellier, E. and Thellier, O., 1941. On the thermic variations of thermoremanent magnetisation of burned earth. Comptes Rendus Hebdomadaires des Seances de L’Academie des Sciences, 213, 5961.Google Scholar
Thellier, E. and Thellier, O., 1959. Sur l’intensité du champ magnétique terrestre dans le passé historique et géologique. Ann. Géophys., 15, 285376.Google Scholar
Tsurutani, B. T., 1991. SPR name change to ‘Space Physics and Aeronomy’. Eos Trans. AGU, 72, 172.Google Scholar
Veikkolainen, T., Pesonen, L. J. and Evans, D. A. D., 2014. PALEOMAGIA: A PHP/MYSQL database of the Precambrian paleomagnetic data. Stud. Geophys. Geod., 58, 425–41. doi: 10.1007/s11200-013-0382-0.Google Scholar
Wolf, R., 1852a. Sonnenflecken – Beobachtungen in der ersten Hälfte desJahres 1852; Entdeckung des Zusammen-hanges zwischen den Declinationsvariationen der Magnetnadel und den Sonnenflecken. Mitt. Naturf. Ges., 224–64, 179–84.Google Scholar
Wolf, R., 1852b. Liaison entre les taches du Soleil et les variations en declinaison de l’aiguille aimantée. Compt. Rend., 35, 364.Google Scholar
Zmuda, A. J., 1971. The International Geomagnetic Reference Field: introduction. Bulletin of the International Association of Geomagnetism and Aeronomy, 28, 148–52.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×