Czech J. Genet. Plant Breed., 2021, 57(2):67-75 | DOI: 10.17221/90/2020-CJGPB

Comparison of DNA methylation landscape between Czech and Armenian vineyards show their unique character and increased diversityOriginal Paper

Kateřina Baránková ORCID...1, Anna Nebish2,3, Jan Tříska4, Jana Raddová1, Miroslav Baránek*,1
1 Mendeleum Department, Faculty of Horticulture, Mendel University in Brno, Lednice, Czech Republic
2 Institute of Grapevine and Wine Sciences (ICVV, UR-CSIC-GR), Logroño, La Rioja, Spain
3 Department of Genetics and Cytology, Yerevan State University, Yerevan, Armenia
4 Laboratory of Metabolomics and Isotopic Analyses, Global Change Research Institute CAS, Brno, Czech Republic

Grapevine is a worldwide crop and it is also subject to global trade in wine, berries and grape vine plants. Various countries, including the countries of the European Union, emphasize the role of product origin designation and suitable methods are sought, able to capture distinct origins. One of the biological matrices that can theoretically be driven by individual vineyards' conditions represents DNA methylation. Despite this interesting hypothesis, there is a lack of respective information. The aim of this work is to examine whether DNA methylation can be used to relate a sample to a given vineyard and to access a relationship between a DNA methylation pattern and different geographical origin of analysed samples. For this purpose, DNA methylation landscapes of samples from completely different climatic conditions presented by the Czech Republic (Central Europe) and Armenia (Southern Caucasus) were compared. Results of the Methylation Sensitive Amplified Polymorphism method confirm uniqueness of DNA methylation landscape for individual vineyards. Factually, DNA methylation diversity within vineyards of Merlot and Pinot Noir cultivars represent only 16% and 14% of the overall diversity registered for individual cultivars. On the contrary, different geographical location of the Czech and Armenian vineyards was identified as the strongest factor affecting diversity in DNA methylation landscapes (79.9% and 70.7% for Merlot and Pinot Noir plants, respectively).

Keywords: authentication; grapevine cultivar; geographical origin; plant adaptation; epigenetic changes; methylation sensitive amplified polymorphism (MSAP)

Published: April 14, 2021  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Baránková K, Nebish A, Tříska J, Raddová J, Baránek M. Comparison of DNA methylation landscape between Czech and Armenian vineyards show their unique character and increased diversity. Czech J. Genet. Plant Breed.. 2021;57(2):67-75. doi: 10.17221/90/2020-CJGPB.
Download citation

Supplementary files:

Download file90-2020 Barankova ESM Tables.xlsx

File size: 17.1 kB

Download file90-2020 Barankova ESM Figures.pdf

File size: 1.34 MB

References

  1. Anhalt U.C., Martínez S.C., Rühl E., Forneck A. (2011): Dynamic grapevine clones - an AFLP-marker study of the Vitis vinifera cultivar Riesling comprising 86 clones. Tree Genetics and Genomes, 7: 739-746. Go to original source...
  2. Baránek M., Křižan B., Ondrušíková E., Pidra M. (2010): DNA-methylation changes in grapevine somaclones following in vitro culture and thermotherapy. Plant Cell Tissue and Organ Culture, 101: 11-22. Go to original source...
  3. Baránek M., Meszáros M., Sochorová J., Čechová J., Raddová J. (2012): Utility of retrotransposon-derived marker systems for differentiation of presumed clones of the apricot cultivar Velkopavlovická. Scientia Horticulturae, 143: 1-6. Go to original source...
  4. Baránek M., Čechová J., Raddová J., Holleinová V., Ondrušíková E., Pidra M. (2015): Dynamics and reversibility of the DNA methylation landscape of grapevine plants (Vitis vinifera) stressed by in vitro cultivation and thermotherapy. PLoS One, 10: e0126638. Go to original source... Go to PubMed...
  5. Baránková K., Sotolář R., Baránek M. (2020): Identification of rare traditional grapevine cultivars using SSR markers and their geographical location within the Czech Republic. Czech Journal of Genetics and Plant Breeding, 56: 71-78. Go to original source...
  6. Bednarek P.T., Zebrowski J., Orłowska R. (2020): Exploring the biochemical origin of DNA sequence variation in barley plants regenerated via in vitro anther culture. International Journal of Molecular Science, 21: 5770. Go to original source... Go to PubMed...
  7. Berna A.Z., Trowell S., Clifford D., Cynkar W., Cozzolino D. (2009): Geographical origin of Sauvignon Blanc wines predicted by mass spectrometry and metal oxide based electronic nose. Analitica Chimica Acta, 648: 146-152. Go to original source... Go to PubMed...
  8. Braschi E., Marchionni S., Priori S., Casalini M., Tommasini S., Natarelli L., Buccianti A., Bucelli P., Costantini E.A.C., Conticelli S. (2018): Tracing the 87Sr/86Sr from rocks and soils to vine and wine: An experimental study on geologic and pedologic characterisation of vineyards using radiogenic isotope of heavy elements. Science of Total Environment, 628: 1317-1327. Go to original source... Go to PubMed...
  9. Capron X., Smeyers-Verbeke J., Massart D.L. (2007): Multivariate determination of the geographical origin of wines from four different countries. Food Chemistry, 101: 1585-1597. Go to original source...
  10. Chandra S., Chapman J., Power A., Roberts J., Cozzolino D. (2017): Origin and regionality of wines - The role of molecular spectroscopy. Food Analytical Methods, 10: 3947-3955. Go to original source...
  11. Coombe B.G. (1995): Growth stages of the grapevine: adoption of a system for identifying grapevine growth stages. Australian Journal of Grape and Wine Research, 1: 104-110. Go to original source...
  12. Dubrovina A.S., Kiselev K.V. (2016): Age-associated alterations in the somatic mutation and DNA methylation levels in plants. Plant Biology, 18: 185-196. Go to original source... Go to PubMed...
  13. Garg R., Chevala V.N., Shankar R., Jain M. (2015): Divergent DNA methylation patterns associated with gene expression in rice cultivars with contrasting drought and salinity stress response. Scientific Reports, 5: 14922. Go to original source... Go to PubMed...
  14. Green J.A., Parr W.V., Breitmeyer J., Valentin D., Sherlock R. (2011): Sensory and chemical characterisation of Sauvignon blanc wine: Influence of source of origin. Food Research International Journal, 44: 2788-2797. Go to original source...
  15. Guarino F., Cicatelli A., Brundu G., Heinze B., Castiglione S. (2015): Epigenetic diversity of clonal white poplar (Populus alba L.) populations: could methylation support the success of vegetative reproduction strategy? PLoS One, 10: e0131480. Go to original source... Go to PubMed...
  16. Imazio S., Labra M., Grassi F., Winfield M., Bardini M., Scienza A. (2002): Molecular tools for clone identification: the case of the grapevine cultivar 'Traminer'. Plant Breeding, 121: 531-535. Go to original source...
  17. Jara C., Laurie V.F., Mas A., Romero J. (2016): Microbial terroir in Chilean valleys: Diversity of non-conventional yeast. Frontiers in Microbiology, 7: 663. Go to original source... Go to PubMed...
  18. Kumar S., Stecher G., Li M., Knyaz C., Tamura K. (2018): MEGA X: Molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution, 35: 1547-1549. Go to original source... Go to PubMed...
  19. Lämke J., Bäurle I. (2017): Epigenetic and chromatin-based mechanisms in environmental stress adaptation and stress memory in plants. Genome Biology, 18: 124. Go to original source... Go to PubMed...
  20. Li X., Zhu J., Hu F., Ge S., Ye M., Xiang H., Zhang G., Zheng X., Zhang H., Zhang S., Li Q., Luo R., Yu C., Yu J., Sun J., Zou X., Cao X., Xioe X., Wang J., Wang W. (2012): Single-base resolution maps of cultivated and wild rice methylomes and regulatory roles of DNA methylation in plant gene expression. BMC Genomics, 13: 300. Go to original source... Go to PubMed...
  21. Lira-Medeiros C.F., Parisod C., Fernandes R.A., Mata C.S., Cardoso M.A., Ferreira P.C.G. (2010): Epigenetic variation in mangrove plants occurring in contrasting natural environment. PLoS One, 5: e.0010326. Go to original source... Go to PubMed...
  22. Moravcová K., Baránek M., Pidra M. (2006): Use of SSR markers to identify grapevine cultivars registered in the Czech Republic. Journal International des Sciences de la Vigne et du Vin, 40: 71-80. Go to original source...
  23. Münzbergová Z., Latzel V., Šurinová M., Hadincová V. (2019): DNA methylation as a possible mechanism affecting ability of natural populations to adapt to changing climate. Oikos, 128: 124-134. Go to original source...
  24. Nei M., Li W.H. (1979): Mathematical model for studying genetic variation in terms of restriction endonucleases. Proceedings of the National Academy of Science, 76: 5269-5273. Go to original source... Go to PubMed...
  25. Ocaña J., Walter B., Schellenbaum P. (2013): Stable MSAP markers for the distinction of Vitis vinifera cv Pinot noir clones. Molecular Biotechnology, 55: 236-248. Go to original source... Go to PubMed...
  26. OIV (2017): Vine Varieties Distribution in the World. Available at: http://www.oiv.int/public/medias/5336/infographie-focus-oiv-2017-new.pdf
  27. Peakall R.O.D., Smouse P.E. (2006): GenAlEx 6: Genetic analysis in Excel. Population genetic software for teaching and research. Molecular Ecology Notes, 6: 288-295. Go to original source...
  28. Peakall R.O.D., Smouse P.E. (2012): GenAlEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics, 28: 2537. Go to original source... Go to PubMed...
  29. Römisch U., Jäger H., Capron X., Lanteri S., Forina M., Smeyers-Verbeke J. (2009): Characterization and determination of the geographical origin of wines. Part III: multivariate discrimination and classification methods. European Food Research and Technology, 230: 31. Go to original source...
  30. Sighinolfi S., Durante C., Lisa L., Tassi L., Marchetti A. (2018): Influence of chemical and physical variables on 87Sr/86Sr isotope ratios determination for geographical traceability studies in the oenological food chain. Beverages, 4: 55. Go to original source...
  31. Teixeira dos Santos C.A., Páscoa R.N., Sarraguça M.C., Porto P.A., Cerdeira, A.L., González-Sáiz J.M., Pizzaro C., Lopes J.A. (2017): Merging vibrational spectroscopic data for wine classification according to the geographic origin. Food Research International Journal, 102: 504-510. Go to original source... Go to PubMed...
  32. This P., Jung A., Boccacci P., Borrego J., Botta R., Costantini L., Crespan M., Dangl G.S., Eisenheld C., FerreiraMonteiro F., Grando S., Ibáñez J., Lacombe T., Laucou V., Magalhães R., Meredith C.P., Milani N., Peterlunger E., Regner F., Zulini L., Maul E. (2004): Development of standard set of microsatellite reference alleles for identification of grape cultivars. Theoretical and Applied Genetics, 109: 1448-1458 Go to original source... Go to PubMed...
  33. Valledor L., Hasbún R., Meijón M., Rodríguez J.L., Santamaría E., Viejo M., Berdasco M., Feito I., Fraga M.F., Canal M.J., Rodríguez R. (2007): Involvement of DNA methylation in tree development and micropropagation. Plant Cell Tissue and Organ Culture, 91: 75-86. Go to original source...
  34. Viggiano L., Concetta de Pinto M. (2017): Dynamic DNA methylation patterns in stress response. In: Rajewski N. (ed.): Plant Epigenetics. RNA Technologies. Cham, Springer: 281-302. Go to original source...
  35. Vitulo N., Lemos Jr W.J.F., Calgaro M., Confalone M., Felis G.E., Zapparoli G., Nardi T. (2019): Bark and grape microbiome of Vitis vinifera: influence of geographic patterns and agronomic management on bacterial diversity. Frontiers in Microbiology, 9: 3203. Go to original source... Go to PubMed...
  36. Xie H., Konate M., Sai N., Tesfamicael K.G., Cavagnaro T., Gilliham M., Breen J., Metcalfe A., Stephen J.R., Bei R.D., Collins C., Lopez C.M.R. (2017): Global DNA methylation patterns can play a role in defining terroir in grapevine (Vitis vinifera cv. Shiraz). Frontiers in Plant Science, e1860. Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.