Plant Soil Environ., 2023, 69(11):532-544 | DOI: 10.17221/291/2023-PSE

Assessment of carbon sequestration as affected by different management practices using the RothC modelOriginal Paper

Jakub Prudil ORCID...1, Lubica Pospíšilová ORCID...1, Tamara Dryšlová ORCID...2, Gabriela Barančíková ORCID...3, Vladimír Smutný ORCID...2, Luboš Sedlák ORCID...1, Pavel Ryant ORCID...1, Petr Hlavinka ORCID...2,4, Miroslav Trnka ORCID...2,4, Ján Halas3, Štefan Koco ORCID...3,5, Jozef Takáč3, Kateřina Boturová ORCID...1, Soňa Dušková ORCID...2, Lubomír Neudert ORCID...2, Michal Rábek ORCID...2
1 Mendel University in Brno, Faculty of AgriSciences, Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Brno, Czech Republic
2 Mendel University in Brno, Faculty of AgriSciences, Department of Agrosystems and Bioclimatology, Brno, Czech Republic
3 National Agricultural and Food Centre, SSCRI Bratislava, Bratislava, External Working Place Prešov, Prešov, Slovak Republic
4 Global Change Research Institute, The Czech Academy of Sciences, Brno, Czech Republic
5 University of Prešov, Faculty of Humanities and Natural Sciences, Department of Geography and Applied Geoinformatics, Prešov, Slovak Republic

Long-term field experiments provide a valuable dataset for predicting changes in soil organic carbon (SOC) stocks in different agricultural systems. The RothC-26.3 model was used to simulate changes in SOC in the monoculture of spring barley (Hordeum vulgare L.) and the Norfolk crop rotation during 1972–2100. The potential of the Gleyic Fluvisol Clayic to sequester organic carbon was investigated. The studied soil was heavily textured, with medium organic carbon content. Four management scenarios in the monoculture and six management scenarios in the Norfolk crop rotation were evaluated. Three different global climate models (MPI, MRI, CMSS) representing the uncertainty of future climate conditions were used. Results showed that carbon stocks were mainly influenced by plant residue inputs and exogenous organic materials application. The projection showed trends of carbon stocks decreasing in the case of monoculture management. Results also documented that management scenario D with straw incorporation and intercrops represented sustainability and carbon stock increase during all modelled climate scenarios. The SOC stock at the end of the century was approximately 66 t/ha. This represents a moderate sequestration of SOC of approximately 0.09 t/ha/year.

Keywords: organic carbon accumulation; crop management and climatic conditions; modelling

Received: July 18, 2023; Revised: October 11, 2023; Accepted: October 16, 2023; Prepublished online: November 22, 2023; Published: November 30, 2023  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Prudil J, Pospíšilová L, Dryšlová T, Barančíková G, Smutný V, Sedlák L, et al.. Assessment of carbon sequestration as affected by different management practices using the RothC model. Plant Soil Environ.. 2023;69(11):532-544. doi: 10.17221/291/2023-PSE.
Download citation

References

  1. Allen D., Pringle M.J., Bray S., Hall J., O'Reagain P.O., Phelps D., Cobon D.H., Bloesch P.M., Dalal R.C. (2013): What determines soil organic carbon stocks in the grazing lands of north-eastern Australia? Soil Research, 51: 695-706. Go to original source...
  2. Baldock J.A., Skjemstad J.O. (1999): Soil organic carbon/soil organic matter. In: Peverill K.I., Sparow L.A., Reuter D.J. (eds): Soil Analysis: An Interpretation Manual. Collingwood, CSIRO Publishing, 159-170. ISBN: 0643063765
  3. Balesdent J., Chenu C., Balabane M. (2000): Relationship of soil organic matter dynamics to physical protection and tillage. Soil and Tillage Research, 53: 215-230. Go to original source...
  4. Barančíková G., Makovníková J., Skalský R., Tarasovičová Z., Nováková M., Halas J., Koco Š., Gutteková M. (2013): Changes in organic carbon pool in agricultural soils and its different development in individual agro-climatic regions of Slovakia. Agriculture, 59: 9-20. Go to original source...
  5. Banwart S.A., Black H., Cai Z., Gicheru P., Joosten H., Victoria R., Milne E., Noellemeyer E., Pascual U. (2015): Soil Carbon Science, Management and Policy for Multiple Benefits. Scope Series Vol. 71. Wallingford, CAB International.
  6. Camino-Serrano M., Guenet B., Luyssaert S., Ciai P., Bastrikov V., De Vos B., Gielen B., Gleixner G., Jornet-Puig A., Kaiser K., Kothawala D., Lauerwald R., Peñuelas J., Schrumpf M., Vicca S., Vuichard N., Walmsley D., Janssens I.A. (2018): ORCHIDEE-SOM: modelling soil organic carbon (SOC) and dissolved organic carbon (DOC) dynamics along vertical soil profiles in Europe. Geoscientific Model Development, 11: 937-957. Go to original source...
  7. Campbel E.E., Paustian K. (2015): Current developments in soil organic matter modelling and the expansion of model applications: a review. Environmental Research Letters, 10: 123004. Go to original source...
  8. Chartin C., Stevens A., Goidts E., Krüger I., Carnol M., van Wesemael B. (2017): Mapping soil organic carbon stocks and estimating uncertainties at the regional scale following a legacy sampling strategy (Southern Belgium, Wallonia). Geoderma Regional, 9: 73-86. Go to original source...
  9. Chevallier T., Hamdi S., Gallali T., Brahim N., Cardinel R., Bounouara Z., Cournac L., Chenu C., Bernoux M. (2016): Soil carbon as an indicator of Mediterranean soil quality. In: Moatti J.P., Thiébault S. (eds.): The Mediterranean Region under Climate Change. A scientific update "Sub-chapter 3.5.3". Marseille, French National Alliance for Environmental Research, 627-636. Go to original source...
  10. Coleman K., Jenkinson D.S., Crocker G.J., Grace P.R., Klir J., Körschens M., Poulton P.R., Richter D.D. (1997): Simulating trends in soil organic carbon in long-term experiments using RothC-26.3. Geoderma, 81: 2944. Go to original source...
  11. Coleman K., Jenkinson D.S. (1996): RothC-26.3 - A model for the turnover of carbon in soil. In: Powlson D.S., Smith P., Smith J.U. (eds.): Evaluation of Soil Organic Matter Models. Berlin, Heidelberg, Springer, 237-246. Go to original source...
  12. Coleman K., Jenkinson D.S. (2005): ROTHC-26.3 - A model for the turnover of carbon in the soil. Model description and windows users' guide, November 1999 issue, 45. (modified April 2005)
  13. Dechow R., Franko U., Kätterer T., Kolbe H. (2019): Evaluation of the RothC model as a prognostic tool for the prediction of SOC trends in response to management practices on arable land. Geoderma, 337: 463-478. Go to original source...
  14. Eckelman W., Baritz R., Bialousz S., Carre F., Jones R., Kibblewithe M., Kozak J., Le Bas C., Toth G., Varallyay G., Halla M.Y., Zupan M. (2006): Common Criteria for Risk Area Identification according to Soil Threats. European Bureau Report No. 20. EUR 22185 EN. Luxembourg, Office for Official Publications of the European Communities, 94.
  15. Falloon P., Smith P. (2002): Simulating SOC changes in long-term experiments with RothC and century: model evaluation for regional scale application. Journal of Soil Use and Management, 18: 101-111. Go to original source...
  16. Falloon P., Smith P., Coleman K., Marshall S. (1998): Estimating the size of the inert organic matter pool from total soil organic carbon content for use in the Rothamsted carbon model. Journal of Biology and Biochemistry, 30: 1207-1211. Go to original source...
  17. Falloon P., Smith P., Coleman K., Marshall S. (2000): How important is an inert organic matter for predictive soil carbon modelling using the Rothamsted carbon mode? Journal of Biology and Biochemistry, 32: 433-436. Go to original source...
  18. Finke P., Opolot E., Balesdent J., Berhe A.A., Boeckx P., Cornu S., Harden J., Hatté C., Trumbore S., Willians E., Doettrl S. (2019): Can SOC modelling be improved by accounting for pedogenesis? Geoderma, 338: 513-524. Go to original source...
  19. Francaviglia R., Di Bene C., Farina R., Salvati L., Vincernte-Vincente J.L. (2019): Assessing "4 per 1 000" soil organic carbon storage rates under Mediterranean climate: a comprehensive data analysis. Mitigation and Adaptation Strategies for Global Change, 24: 795-818. Go to original source...
  20. Hamza M.A., Anderson W.K. (2005): Soil compaction in cropping systems. A review of the nature, causes and possible solutions. Soil and Tillage Research, 82: 121-145. Go to original source...
  21. Hábová M., Pospíšilová L., Hlavinka P., Trnka M., Barančíková G., Tarasovičová Z., Takáč J., Koco Š., Menšík L., Nerušil P. (2019): Carbon pool in soil under organic and conventional farming systems. Soil and Water Research, 14: 145-152. Go to original source...
  22. Guo L.B., Gifford R.M. (2002): Soil carbon stocks and land use change: a meta analysis. Global Change Biology, 8: 345-360. Go to original source...
  23. Guo L.B., Wang M., Gifford R.M. (2007): The change of soil carbon stocks and fine root dynamics after land use change from a native pasture to a pine plantation. Plant and Soil, 299: 251-262. Go to original source...
  24. IUSS Working Group WRB (2022): World Reference Base for Soil Resources. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps. 4th Edition. Vienna, International Union of Soil Sciences.
  25. IPCC (2006): The Intergovernmental Panel on Climate Change (IPCC) - Eggelston S., Buendia L., Miwa K., Ngara T., Tanabe K. (eds.). Kanagawa, Institute for Global Environmental Strategies.
  26. Jenkinson D.S., Meredith J., Kinyamario J., Waren G., Wong M.H., Harkness D.D., Bol R., Coleman K. (1999): Estimating net primary production from measurements made on soil organic matter. Ecology, 80: 2762-2773. Go to original source...
  27. Koven C., Hugelius G., Lawrence D.M., Wiede W. (2017): Higher climatological temperature sensitivity of soil carbon in cold than warm climates. Nature Climate Change, 7: 817. Go to original source...
  28. Kowalska N., Šigut L., Stojanović M., Fisher M., Kysselka I., Pavelka M. (2020): Analysis of floodplain forest sensitivity to drought. Philosophical Transactions of the Royal Society B, 375: 20190518. Go to original source... Go to PubMed...
  29. Kunlanit B., Butnan S., Vityakon P. (2019): Land-use changes influencing C sequestration and quality in topsoil and subsoil. Agronomy, 9: 520. Go to original source...
  30. Ledo A., Smith P., Zerihun A., Whiteker J., Vincente-Vincente J.L., Qin Z., McNamara N.P., Zinn Y., Liorente M., Liebig M., Kuhnert M., Dondini M., Don A., Diaz-Pines E., Datta A., Bakka H., Aguilera E., Hillier J. (2020): Changes in soil organic carbon under perennial crops. Global Change Biology, 26: 4158-4168. Go to original source... Go to PubMed...
  31. Lorenz K., Lal R. (2005): The depth distribution of soil organic carbon in relation to land use and management and the potential of carbon sequestration in subsoil horizons. Advances of Agronomy, 88: 35-66. Go to original source...
  32. Lugato E., Panago P., Bampa F., Jones A., Montanarella L. (2014): A new baseline of organic carbon stock in European agricultural soils using a modelling approach. Global Change Biology, 20: 313-326. Go to original source... Go to PubMed...
  33. Maillard E., Angers D. (2014): Animal manure application and soil organic carbon stocks: a meta-analysis. Global Change Biology, 20: 666-679. Go to original source... Go to PubMed...
  34. Němeček J., Muhlhanselová M., Macků J., Vokoun J., Vavříček D., Novák P. (2011): Taxonomic Soil Classification System of the Czech Republic. 2nd Edition. Prague, Czech University of Life Sciences Prague. (In Czech)
  35. Panagos P., Hiederer R., van Liedekerke M., Bamp F. (2013): Estimating soil organic carbon in Europe based on data collected through an European network. Ecological Indicators, 24: 439-450. Go to original source...
  36. Peralta G., Di Paolo L., Luotto I., Omuto C., Mainka M., Viatkin K., Yigini Y. (2022): Global Soil Organic Carbon Sequestration Potential Map (GSOCseq v1.1) - Technical Manual. Rome, Food and Agriculture Organisation of the United Nations.
  37. Paramesh V., Ravisankar N., Behera U., Arunachalam V., Kumar P., Rajkumar R.S., Misra S.D., Kumar R.M., Prusty A.K., Jacob D., Panwar A.S., Mayenakr T., Reddy V.S., Rajkumar S. (2022): Integrated farming system approaches to achieve food and nutritional security for enhancing profitability, employment, and climate resilience in India. Food and Energy Security. doi.org/10.1002/fes3.321 (In Press) Go to original source...
  38. Pohanková E., Hlavinka P., Takáč J., Žalud Z., Trnka M. (2015): Calibration and validation of the crop growth Model DAISY for spring barley in the Czech Republic. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, 4: 1177-1186. Go to original source...
  39. Poeplau C., Don A. (2015): Carbon sequestration in agricultural soils via cultivation of cover-crops. A meta-analysis. Agriculture, Ecosystems and Environment, 200: 33-41. Go to original source...
  40. Prokopyeva K., Romanenkov V., Sidorenkova N., Pavlova V., Siptits S., Krasilnikov P. (2021): The effect of crop rotation and cultivation history on predicted carbon sequestration in soils of two experimental fields in the Moscow Region, Russia. Agronomy, 11: 226. Go to original source...
  41. Rogers D., Setzler B., Chiu Y.W. (2019): Using plant advances in environmental studies. Advances in Environmental Studies, 3: 191-197.
  42. Seitz D., Fischer L., Dechow R., Wiesmeier M., Don A. (2022): The potential of cover crops to increase soil organic carbon storage in German croplands. Plant and Soil, 488: 157-173. Go to original source...
  43. Smith J., Smith P., Wattenbach M., Gottschalk P., Romanenkov V.A., Sevcova L.K., Sirotenko O.D., Rukhovic D.I., Korolova P.V., Romanenko I.A., Lisovoj N.V. (2007): Projected changes in the organic carbon stocks of cropland mineral soils of European Russia and the Ukraine 1990-2070. Global Change Biology, 13: 342-354. Go to original source...
  44. Smith P., Smith J.U., Powlson D.S., McGill W.B., Arah J.R.M., Chertov O.G., Coleman K., Franko U., Frolking S., Jenkinson D.S., Jensen L.S., Kelly R.H.M., Klein-Gunnewiek R., Komarov A.S., Li C., Molina J.A.E., Mueller T., Parton W.J., Thorney J.H.M., Whitmore A.P. (1997): A comparison of the performance of nine soil organic matter models using datasets from seven long-term experiments. Geoderma, 81: 153-225. Go to original source...
  45. Song X.Y., Liu S.T., Liu Q.H., Zhang W.J., Hu C.G. (2014): Carbon sequestration in soil humic substances under long-term fertilization in a wheat-maize system from North China. Journal of Integrative Agriculture, 13: 562-569. Go to original source...
  46. Tayebi M., Rosas J.T.F., De Sousa Mendes W., Poppiel R.R., Ostovari Y., Ruiz L.F.Ch., Dos Santos N.V., Cerri C.E.P., Silva S.H.G., Curi N., Silvero N.E.Q., Dematté J.A.M. (2021): Drivers of organic carbon stocks in different LULC history and along soil depth for a 30 years image time series. Remote Sensing, 13: 2223. Go to original source...
  47. Valkama E., Kunypiyaeva G., Zhapayev R., Karabayev M., Zhusupbekov E., Perego A., Schillaci C., Sacco D., Moretti B., Grignani C., Acutis M. (2020): Can conservation agriculture increase soil carbon sequestration? A modelling approach. Geoderma, 369: 114298. Go to original source...
  48. Van Wesemael B., Paustian K., Meersmans J., Goidts E., Barančíková G., Easter M. (2010): Agricultural management explains historic changes in regional soil carbon stocks. Proceedings of the National Academy of Sciences of the United States of America, 107: 14926-14930. Go to original source... Go to PubMed...
  49. Viscarra Rossel R.A., Brus D.J., Lobsey C., Shis Z., McLachlan G. (2016): Baseline estimates of soil organic carbon by proximal sensing: comparing design-based, model- assisted and model-based inference. Geoderma, 265: 152-163. Go to original source...
  50. Wang Q., Liu X., Li J., Yang X., Guo Z. (2021): Straw application and soil organic carbon change: a meta-analysis. Soil and Water Research, 16: 112-120. Go to original source...
  51. Webb J., Bellamy P., Loveland P.J., Goodlass G. (2003): Crop residue returns and equilibrium soil organic carbon in England and Wales. Soil Science Society of America Journal, 67: 929-936. Go to original source...
  52. Wiesmeier M., Urbanski L., Hobley E., Lang B., Von Lutzow M., Marin-Spiotta E., Van Wasemael B., Rabot E., Liess M., Garcia-Franco N., Wollschlager U., Vogel H.J., Kogel-Knabner I. (2019): Soil organic carbon storage as a key function of soils - a review of drivers and indicators at various scales. Geoderma, 333: 149-169. Go to original source...
  53. Wust-Galey C., Keel C.G., Leifeld J. (2020): A model based carbon inventory for Switzerland's mineral agricultural soils using RothC. Agroscope Science, 105: 115.
  54. Yigini Y., Montanarella L., Panagos P. (2017): European Contribution towards a global assessment of agricultural soil organic carbon stock. Advances in Agronomy, 142: 385-410. Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.