Photosynthetica 2019, 57(1):103-112 | DOI: 10.32615/ps.2019.031

Photosynthesis and growth kinetics of Chlorella vulgaris R-117 cultured in an internally LED‑illuminated photobioreactor

J.R. MALAPASCUA1,2, K. RANGLOVÁ1 ,3, J. MASOJÍDEK1,2
1 Centre ALGATECH, Laboratory of Algal Biotechnology, Institute of Microbiology, Czech Academy of Science, 379 81 Třeboň, Czech Republic
2 Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
3 Faculty of Agriculture, University of South Bohemia, České Budějovice, Czech Republic

The aim of this work was to correlate changes of photosynthesis activity vs. growth in Chlorella vulgaris R-117 (CCALA 1107), fast-growing and robust microalga cultured in an internally illuminated 10-L photobioreactor (PBR). The cultures were grown at high output irradiance provided by four LED light sources submerged in the culture when the light path was short, between 25-30 mm. The culture of Chlorella R-117 grown under 2,500 µmol(photon) m-2 s-1 attained a doubling time of 3.5 d and biomass density of 3.5 g(DM) L-1 after about 10-d period. When grown under 3,500 µmol(photon) m-2 s-1, the culture reached a doubling time of 1.7 d, and biomass density of ~5.5 g L-1 before entering the stationary phase. Electron transport rate changes correlated well with the culture growth demonstrating the usefulness of chlorophyll fluorescence for photosynthesis monitoring. This can be crucial for potential scale-up to large indoor PBRs to optimise culture growth.

Additional key words: chlorophyll fluorescence; light-response curves; microalgae; OJIP induction kinetics; pigments.

Received: February 26, 2018; Accepted: August 16, 2018; Prepublished online: December 7, 2018; Published: January 30, 2019  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
MALAPASCUA, J.R., RANGLOVÁ, K., & MASOJÍDEK, J. (2019). Photosynthesis and growth kinetics of Chlorella vulgaris R-117 cultured in an internally LED‑illuminated photobioreactor. Photosynthetica57(1), 103-112. doi: 10.32615/ps.2019.031
Download citation

Supplementary files

Download file1905.R2_Fig. 2S.jpg

File size: 656.11 kB

Download file1905.R2_Fig 1S.jpg

File size: 1.09 MB

References

  1. Acién F.G., Molina E., Reis A. et al.: Photobioreactors for the production of microalgae. - In: Gonzalez-Fernandez C., Muñoz R. (ed.): Microalgae-based Biofuels and Bioproducts. From Feedstock Cultivation to End-products. Pp. 1-44. Woodland Publishing, Elsevier Science & Technology, Cambridge, UK 2017. Go to original source...
  2. An J.-Y., Kim B.-W: Biological desulfurization in an optical-fiber photobioreactor using an automatic sunlight collection system. - J. Biotechnol. 80: 35-44, 2000. Go to original source...
  3. Babaei A., Ranglová K., Malapascua J.R., Masojídek J.: The synergistic effect of Selenium (selenite, -SeO32-) dose and irradiance intensity in Chlorella cultures. - AMB Express 7: 56, 2017. Go to original source...
  4. Bischof K., Gómez I., Molis M. et al.: Ultraviolet radiation shapes seaweed communities. - Rev. Environ. Sci. Bio. 5: 141-166, 2006. Go to original source...
  5. Carvalho A.P., Meireles L.A., Malcata F.X.: Microalgal reactors: a review of enclosed system designs and performances. - Biotechnol. Progr. 22: 1490-506, 2006. Go to original source...
  6. Chen C.-Y., Chang J.-S.: Enhancing phototropic hydrogen production by solid-carrier assisted fermentation and internal optical-fiber illumination. - Process Biochem. 41: 2041-2049, 2006. Go to original source...
  7. Chen C.-Y., Lee C.-M., Chang J.-S.: Feasibility study on bioreactor strategies for enhanced photohydrogen production from Rhodopseudomonas palustris WP3-5 using optical-fiber-assisted illumination systems. - Int. J. Hydrogen Energ. 31: 2345-2355, 2006a. Go to original source...
  8. Chen C.-Y., Lee C.-M., Chang J.-S.: Hydrogen production by indigenous photosynthetic bacterium Rhodopseudomonas palustris WP3-5 using optical fiber-illuminating photobioreactors. - Biochem. Eng. J. 32: 33-42, 2006b. Go to original source...
  9. Chen C.-Y., Saratale G.D., Lee C.-M. et al.: Phototrophic hydrogen production. - Int. J. Hydrogen Energ. 33: 6886-6895, 2008. Go to original source...
  10. Chiang C.L., Lee C.M., Chen P.-C.: Utilization of cyanobacteria Anabaena sp. CH1 in biological carbon dioxide mitigation processes. - Bioresource Technol. 102: 5400-5405, 2011. Go to original source...
  11. Choi Y.E., Yun Y.S., Park J.M.: Multistage operation of airlift photobioreactor for increased production of astaxanthin from Haematococcus pluvialis. - J. Microb. Biotechnol. 21: 1081-1087, 2011. Go to original source...
  12. Csögör Z., Kiessling B., Perner I. et al.: Growth and product formation of Porphyridium purpureum. - J. Appl. Phycol. 13: 317-324, 2001. Go to original source...
  13. Cuaresma M., Janssen M., Vílchez C., Wijffels R.H.: Productivity of Chlorella sorokiana in a short light-path (SLP) panel photobioreactor under high irradiance. - Biotechnol. Bioeng. 104: 352-359, 2009. Go to original source...
  14. Eilers P.H.C., Peeters J.C.H.: A model for the relationship between light intensity and the rate of photosynthesis in phytoplankton. - Ecol. Model. 42: 199-215, 1988. Go to original source...
  15. Enriquez S., Borowitzka M.A.: The use of the fluorescence signal in studies of seagrasses and macroalgae. - In: Suggett D.J., Prášil O, Borowitzka M.A. (ed.): Chlorophyll a Fluorescence in Aquatic Sciences: Methods and Applications. Developments in Applied Phycology, Vol. 4. Pp. 187-208. Springer, Dordrecht 2010. Go to original source...
  16. Figueroa F., Mercado J., Jiménez C. et al.: Relationship between bio-optical characteristics and photoinhibition of phytoplankton. - Aquat. Bot. 59: 237-251, 1997. Go to original source...
  17. Figueroa F., Jerez C., Korbee N.: Use of in vivo chlorophyll fluorescence to estimate photosynthetic activity and biomass productivity in microalgae grown in different culture systems. - Lat. Am. J. Aquat. Res. 41: 801-819, 2013. Go to original source...
  18. Gordon J.M.: Tailoring optical systems to optimized photo-bioreactors. - Int. J. Hydrogen Energ. 27: 1175-1184, 2002. Go to original source...
  19. Grobbelaar J., Nedbal L., Tichý V.: Influence of high frequency light/dark fluctuations on photosynthetic characteristics of microalgae photoacclimated to different light intensities and implications for mass algal cultivation. - J. Appl. Phycol. 8: 335-343, 1996. Go to original source...
  20. Havlik I., Lindner P., Scheper T., Reardon K.F.: On-line monitoring of large cultivations of microalgae and cyanobacteria. - Trends Biotechnol. 31: 406-414, 2013. Go to original source...
  21. Hirata S., Hayashitani M., Taya M., Tone S.: Carbon dioxide fixation in batch culture of Chlorella sp. using a photobioreactor with a sunlight-collecting device. - J. Biosci. Bioeng. 81: 470-472, 1996. Go to original source...
  22. Hofstraat J.W., Peeters J.C., Snel J.F.H., Geel C.: Simple determination of photosynthetic efficiency and photoinhibition of Dunaliella tertiolecta by saturating pulse measurements. - Mar. Ecol. Prog. Ser. 103: 187-196, 1994. Go to original source...
  23. Jacobi A., Steinweg C., Rosello-Sastre R., Poste C.: Advanced photobioreactor LED illumination system: scale-down approach to study microalgal growth kinetics. - Eng. Life Sci. 12: 621-630, 2012. Go to original source...
  24. Janssen M., de Bresser L., Baijens T. et al.: Scale-up aspects of photobioreactors: effects of mixing-induced light/dark cycles. - J. Appl. Phycol. 12: 225-237, 2000. Go to original source...
  25. Kromkamp J.C., Barranguet C., Peene J.: Determintaion of microphytobenthos PSII quantum efficiency and photosynthetic activity by means of variable chlorophyll fluorescence. - Mar. Ecol. Prog. Ser. 162: 45-55, 1998. Go to original source...
  26. Kromkamp J.C., Forster R.M.: The use of variable fluorescence measurements in aquatic ecosystems: differences between multiple and single turnover measuring protocols and suggested terminology. - Eur. J. Phycol. 38: 103-112, 2003. Go to original source...
  27. Lee C.-G., Palsson B.O.: High-density algal photobioreactors using light-emitting diodes. - Biotechnol. Bioeng. 44: 1161-1167, 1994. Go to original source...
  28. Lee C.G., Palson B.O.: Light-emitting diode based algal photobioreactor with external gas exchange. - J. Ferment. Bioeng. 79: 257-263, 1995. Go to original source...
  29. Malapascua J.R., Jerez C., Sergejevová M. et al.: Photosynthesis monitoring to optimize growth of microalgal mass cultures: application of chlorophyll fluorescence techniques. - Aquat. Biol. 22: 123-140, 2014. Go to original source...
  30. Masojídek J., Kopecký J., Koblížek M., Torzillo G.: The xanthophyll cycle in green algae (Chlorophyta): its role in the photosynthetic apparatus. - Plant Biol. 6: 342-349, 2004. Go to original source...
  31. Masojídek J., Torzillo G.: Mass cultivation of freshwater microalgae. - In: Jorgensen S.E., Fath B. (ed.): Encyclopaedia of Ecology. Pp. 2226-2235. Elsevier, Oxford 2008. Go to original source...
  32. Masojídek J., Vonshak A., Torzillo G.: Chlorophyll fluorescence application in microalgal mass cultures. - In: Suggett D.J., Prášil O., Borowitzka M.A. (ed.): Chlorophyll a Fluorescence in Aquatic Sciences: Methods and Applications. Pp. 277-292. Springer, Dordrecht 2011a. Go to original source...
  33. Masojídek J., Kopecký J., Giannelli L., Torzillo G.: Productivity correlated to photobiochemical performance of Chlorella mass cultures grown outdoors in thin-layer cascades. - J. Ind. Microbiol. Biot. 38: 307-317, 2011b. Go to original source...
  34. Masojídek J., Sergejevová M., Malapascua J.R., Kopecký J.: Thin-layer systems for mass cultivation of microalgae: flat panels and sloping cascades. - In: Bajpai R., Prokop A., Zappi M. (ed.): Algal Biorefinery, Vol. 2: Products and Refinery Design. Pp. 237-261, Springer International Publishing, Switzerland 2015. Go to original source...
  35. Maxwell K., Johnson G.N.: Chlorophyll fluorescence - a practical guide. - J. Exp. Bot. 51: 659-668, 2000. Go to original source...
  36. Nedbal L., Tichy V., Xiong F.H., Grobbelaar J.U.: Microscopic green algae and cyanobacteria in high-frequency intermittent light. - J. Appl. Phycol. 8: 325-333, 1996. Go to original source...
  37. Nedbal L., Trtílek M., Červený J. et al.: A photobioreactor system for precision cultivation of photoautotrophic microorganisms and for high-content analysis of suspension dynamics. - Biotechnol. Bioeng. 100: 902-910, 2012. Go to original source...
  38. Obata M., Tatsuki T., Taguchi S.: Using chlorophyll fluorescence to monitor yields of microalgal production. - J. Appl. Phycol. 21: 315-319, 2009. Go to original source...
  39. Ogbonna J.C., Yada H., Masui H., Tanaka H.: A novel internally illuminated stirred tank photobioreactor for large-scale cultivation of photosynthetic cells. - J. Ferment. Bioeng. 82: 61-67, 1996. Go to original source...
  40. Ogbonna J.C., Soejima T., Tanaka H.: An integrated solar and artificial light system for internal illumination of photobioreactors. - J. Biotechnol. 70: 289-297, 1999. Go to original source...
  41. Phillips J.N., Myers J.: Growth rate of chlorella in flashing light. - Plant Physiol. 29:152-161, 1954. Go to original source...
  42. Pulz O., Broneske J., Waldeck P.: IGV GmbH experience report, industrial production of microalgae under controlled conditions: innovative prospects. - In: Richmond A., Hu Q. (ed.): Handbook of Microalgal Culture: Applied Phycology and Biotechnology, 2nd edition. Pp. 445-460. John Wiley & Sons, Oxford 2013. Go to original source...
  43. Radmer R.J.: Using a lamp having a higher intensity and efficiency. - US patent 4952511 B, 1989
  44. Ralph P.J., Gademann R.: Rapid light curves: A powerful tool to assess photosynthetic activity. - Aquat. Bot. 82: 222-237, 2005. Go to original source...
  45. Richmond A.: Biological principles of mass cultivation of photoautotrophic microalgae. - In: Richmond A., Hu Q. (ed.): Handbook of Microalgal Culture: Applied Phycology and Biotechnology 2nd edition. Pp. 171-204. John Wiley & Sons, Oxford 2013. Go to original source...
  46. Ritchie R.J.: Fitting light saturation curves measured using modulated fluorometry. - Photosynth. Res. 96: 201-215, 2008. Go to original source...
  47. Schreiber U., Schliwa U., Bilger W.: Continuous recording of photochemical and nonphotochemical fluorescence quenching with a new type of modulation fluorimeter. - Photosynth. Res. 10: 51-62, 1986. Go to original source...
  48. Sergejevová M., Malapascua J.R., Kopecký J., Masojídek J.: Photobioreactors with internal illumination. - In: Prokop A., Bajpai R., Zappi M. (ed.): Algal Biorefineries: Products and Refinery Design. Pp. 213-236. Springer International Publishing, Switzerland 2015. Go to original source...
  49. Šetlík I., Berková E., Doucha J. et al.: The coupling of synthetic and reproduction processes in Scenedesmus quadricauda. - Arch. Hydrobiol. 7: 172-213, 1972.
  50. Stirbet A., Govindjee: On the relation of the Kautsky effect (chlorophyll a fluorescence induction) and photosystem II: basics and applications of the OJIP fluorescence transient. - J. Photoch. Photobio. B 104: 236-257, 2011. Go to original source...
  51. Strasser R.J., Srivastava A., Govindjee: Polyphasic chlorophyll a fluorescence transient in plants and cyanobacteria. - Photochem. Photobiol. 61: 33-42, 1995. Go to original source...
  52. Strasser R., Tsimilli-Michael M., Srivastava A.: Analysis of the chlorophyll a fluorescence transients. - In: Papageorgiou G.C., Govindjee (ed.): Chlorophyll a Fluorescence: A Signature of Photosynthesis. Pp. 321-362. Springer, Dordrecht 2004. Go to original source...
  53. Suh I.S., Lee S.B.: Cultivation of a cyanobacterium in an internally radiating air-lift photobioreactor. - J. Appl. Phycol. 13: 381-388, 2001. Go to original source...
  54. Torzillo G., Accolla P., Pinzani E., Masojídek J.: In situ monitoring of chlorophyll fluorescence to assess the synergistic effect of low temperature and high irradiance stresses in Spirulina cultures grown outdoors in photobioreactors. - J. Appl. Phycol. 8: 283-291, 1996. Go to original source...
  55. Torzillo G., Bernardini P., Masojídek J.: On-line monitoring of chlorophyll fluorescence to assess the extent of photoinhibition of photosynthesis induced by high oxygen concentration and low temperature and its effect on the productivity of outdoor cultures of Spirulina platensis (Cyanobacteria). - J. Phycol. 34: 504-510, 1998. Go to original source...
  56. Tredici M.: Mass production of microalgae: photobioreactors. - In: Richmond A. (ed.): Handbook of Microalgal Mass Cultures. Pp. 178-214. Blackwell Science, Oxford 2004. Go to original source...
  57. van Kooten O., Snel J.F.H.: The use of chlorophyll fluorescence nomenclature in plant stress physiology. - Photosynth. Res. 25: 147-150, 1990. Go to original source...
  58. Vonshak A., Torzillo G., Tomaseli L.: Use of chlorophyll fluores-cence to estimate the effect of photoinhibition in outdoor cultures of Spirulina platensis. - J. Appl. Phycol. 6: 31-34, 1994. Go to original source...
  59. Walker D.A.: Measurement of oxygen and chlorophyll fluores-cence. - In: Cooms J., Hall D.O., Long S.P., Scurlock J.M.O. (ed.): Techniques in Bioproductivity and Photosynthesis, 2nd edition. Pp. 95-98. Pergamon Press, Oxford 1985. Go to original source...
  60. Wang S.-K., Stiles A.R., Guo C., Liu C.-Z.: Microalgae cultivation in photobioreactors: an overview of light characteristics. - Eng. Life Sci. 14: 550-559, 2014. Go to original source...
  61. Wellburn A.R.: The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. - J. Plant Physiol. 144: 307-313, 1994. Go to original source...
  62. White S., Anandraj A., Bux F.: PAM fluorometry as a tool to assess microalgal nutrient stress and monitor cellular neutral lipids. - Biotechnol. Resour. 102: 1675-1682, 2011. Go to original source...
  63. Yam F.K., Hassan Z.: Innovative advances in LED technology. - Microelectron J. 36: 129-137, 2005. Go to original source...
  64. Zachleder V., Šetlík I.: Effect of irradiance on the course of RNA synthesis in the cell cycle of Scenedesmus quadricauda. - Biol. Plantarum 24: 341-353, 1982. Go to original source...
  65. Zarmi Y., Bel G., Aflalo C.: Theoretical analysis of culture growth in flat-plate bioreactors: the essential role of timescales. - In: Richmond A., Hu Q. (ed.): Handbook of Microalgal Culture: Applied Phycology and Biotechnology, 2nd edition. Pp. 205-224. John Wiley & Sons, Oxford 2013. Go to original source...
  66. Zittelli G.C., Biondi N., Rodolfi L., Tredici M.R.: Photobioreactors for mass production of microalgae. - In: Richmond A., Hu Q. (ed.): Handbook of Microalgal Culture: Applied Phycology and Biotechnology. 2nd ed. Pp. 225-266. John Wiley & Sons, Oxford 2013. Go to original source...