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Abstract 
The aim of this paper is to present basic principles of common multivariate statistical approaches to dimensionality 
reduction and to discuss three particular approaches, namely feature extraction, (prior) variable selection, and sparse 
variable selection. Their important examples are also presented in the paper, which includes the principal component 
analysis, minimum redundancy maximum relevance variable selection, and nearest shrunken centroid classifier with an 
intrinsic variable selection. Each of the three methods is illustrated on a real dataset with a biomedical motivation, 
including a biometric identification based on keystroke dynamics or a study of metabolomic profiles. Advantages and 
benefits of performing dimensionality reduction of multivariate data are discussed. 
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Introduction 

The aim of this paper is to present basic principles of 
common dimensionality reduction methods, to charac-
terize main approaches to dimensionality reduction and 
to illustrate selected methods and their benefits on real 
data with a biomedical motivation. We choose here 
three particular approaches and describe them in detail. 
These are important as well as reliable examples of three 
main types of dimensionality reductions. 
• Principal component analysis (PCA), which repre-

sents the most common feature extraction method in 
biomedical applications; 

• Minimum redundancy maximum relevance (MRMR) 
approach, which is a variable selection method; and 

• Nearest shrunken centroid (NSC), which is an exam-
ple of a sparse classification method (classifier) with 
an intrinsic variable selection. 

While the scope of this paper must stay limited, 
numerous other methods can be found in specialized 
literature [1–3]. 

Reducing the dimensionality of biomedical data be-
comes extremely needed with the increasing availability 
of Big Data in biomedicine and health-care [4]. A pre-
processing and cleaning of multivariate data together 
with a subsequent dimensionality reduction and explor-
atory data analysis represent crucial preliminary steps of 

their analysis [2, 5]. Thus, dimensionality reduction 
does not represent the very aim of the data analysis, but 
rather a preparatory (auxiliary) tool with the aim to find 
the most important variables or some latent factors or 
components behind the data (possibly with a clear 
interpretation). Their subsequent analysis, often guided 
by the main task from the perspective of the biomedical 
problem under consideration, may have different one of 
the following main aims: 
• Classification (the task to assign a new observation to 

one of given groups, based on a training dataset with 
a known group labeling); 

• Regression (explaining and predicting one or more 
variables by means of other variables); 

• Clustering (finding natural groups of data, without 
a prior knowledge of these groups); 

• Clinical decision support within decision support 
systems [6, 7]. 

Dimensionality Reduction 

Some form of dimensionality (or complexity) 
reduction is commonly used as a preliminary step of 
analyzing complex data. The aim of this section is to 
discuss dimensionality reduction from a general per-
spective, to overview our experience from various 
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practical biomedical analyses and to characterize its 
important types. Examples of particular methods will be 
then described in the following sections, where the 
methods were selected as flagships (prominent and at 
the same time reliable even in the simplest version) of 
the main types of dimensionality reduction. 

In the whole paper, we assume that the total number n 
of p-dimensional observations (random vectors, mea-
surements) is observed, where the j-th observation 
(sample) is denoted as 𝑋𝑋𝑗𝑗1, … ,𝑋𝑋𝑗𝑗𝑗𝑗 for 𝑗𝑗 = 1, … ,𝑛𝑛. The 
data may be continuous and/or categorical and the 
observed variables may correspond to symptoms and 
signs or laboratory measurements. If p is large, and 
especially if p exceeds n largely (i.e. 𝑛𝑛 ≪ 𝑝𝑝), we speak 
of high-dimensional data. 

If the data are high-dimensional data, standard 
statistical methods suffer from the so-called curse of 
dimensionality and dimensionality reduction becomes 
a necessity. The serious challenges include not only the 
high dimensionality itself, but also the presence of 
outliers, dependence among variables, or the need to 
combine continuous and categorical variables [3]. Only 
recently, biomedical researchers seem to be becoming 
aware of dimensionality reduction methods tailor-made 
for high-dimensional data [8–11]. These have been 
proposed not only in journals focused on biostatistics or 
multivariate statistics, but also in those devoted to infor-
mation theory, computer science, or bioinformatics. 

Examples of real-world biomedical applications, 
where dimensionality reduction brings benefits, include: 
• Analysis of spontaneous and induced neuronal oscil-

lations in brains in schizophrenia patients and healthy 
controls, and particularly performing a pre-processing 
to clearly separate signal and noise [12]; 

• Finding predictors of age of a tissue based on DNA 
methylation products [13]; 

• Human identification based on infrared images of the 
iris, particularly searching for features with the largest 
discrimination ability [14]. 

In general, dimensionality reduction may bring various 
benefits: 
• Simplification of a subsequent analysis, i.e. allowing 

to compute standard statistical methods, which would 
be either computationally infeasible or at least 
numerically unstable under the presence of redundant 
variables [15]; 

• Improving the interpretation of consequent analysis; 
• Decorrelation, i.e. reducing or removing correlations 

(associations) among variables, which improves the 
stability of a subsequent analysis; 

• Describing differences among given groups; 
• Revealing the dimensionality of the separation among 

given groups, e.g. by expressing the contribution of 
individual variables to the separation among given 
groups; 
 
 
 

• Dividing variables to clusters [16]; 
• A possible improvement of the performance of a sub-

sequently performed classification (which is possible 
but definitely not typical). 
We distinguish between supervised and unsupervised 

dimensionality reduction methods. Supervised ones are 
tailor-made for data coming from two or more groups, 
while the information about the group membership is 
taken into account. We denote by (𝑌𝑌1, … ,𝑌𝑌𝑛𝑛)𝑇𝑇 the 
grouping variable corresponding to the true group 
membership of the observed data, where 𝑌𝑌𝑖𝑖 = 1 if the  
i-th observation comes from the first group and 𝑌𝑌𝑖𝑖 = 0 
otherwise. Unsupervised methods consider data only in 
one group. If the data are in groups but the group 
labeling is not known even for the training dataset, 
unsupervised methods must be used. It is suboptimal to 
use an unsupervised approach for data coming from 
several known groups. 

We also distinguish between prior variable selection 
(also denoted plainly as variable selection or feature 
selection), which selects a smaller set of important 
variables and ignores all remaining ones, and feature 
extraction, which replaces the data by combinations of 
variables. A specific category of variable selection 
methods are sparse approaches, which contain an 
intrinsic variable selection and the subsequent analysis 
ignores some of the variables; also future measurements 
in the same situation can be performed on a smaller set 
of variables, which may reduce the (e.g. financial) 
demands of the experiments. 

It is not possible to give a general answer to the 
question which approach is the best for a given dataset. 
Of course, each method has its own set of assumptions. 
Feature extraction (unlike variable selection) ensures 
decorrelation and consequently a better stability of the 
results. Correlations of variables do not have a harmful 
influence on predictions and if the user is interpreted in 
predictions, feature extraction is usually suitable even 
without a clear interpretation of the result. 

On the other hand, variable selection may be the 
preferable choice if a clear interpretation is desirable. It 
induces sparsity, i.e. the user does not have to measure 
all variables. It allows to give comprehensible answers 
to various questions, e.g. how to explain values of 
individual parameters or which variables are the most 
important ones (for explaining the odds ratio that 
a disease will develop etc.). 

Principal  Component Analysis 

Principal component analysis (PCA) represents the 
most commonly used feature extraction method [1]. 
After we describe the method, PCA will be illustrated 
on a small dataset. 
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Method 
We denote here the i-th variable as 𝑋𝑋𝑖𝑖 =

(𝑋𝑋1𝑖𝑖, … ,𝑋𝑋𝑛𝑛𝑛𝑛)𝑇𝑇  for 𝑖𝑖 = 1, … , 𝑝𝑝. The method considers the 
empirical covariance matrix 𝑆𝑆 of the data defined as 

                  𝑆𝑆 = 1
𝑛𝑛−1

∑ (𝑋𝑋𝑖𝑖 − 𝑋𝑋�)(𝑋𝑋𝑖𝑖 − 𝑋𝑋�)𝑇𝑇 .𝑛𝑛
𝑖𝑖=1              (1) 

Here, 𝑋𝑋� denotes the p-dimensional arithmetic mean of 
the observations. The whole PCA is based on algebra 
transforms of the (symmetric) matrix 𝑆𝑆. Particularly, the 
so-called eigenvalues 𝜆𝜆1, … , 𝜆𝜆𝑝𝑝 of 𝑆𝑆, which are all non-
negative, and their corresponding eigenvectors denoted 
as 𝑞𝑞1, … , 𝑞𝑞𝑠𝑠 will be used. The idea is to explain each 
observation as the mean (across all observations) plus 
the individual effect evaluated as a linear combination 
of the principal components, where the most variables 
ones (most remarkable) are the first ones. 

The aim of PCA is to replace the p-dimensional 
observations by a small set of principal components. Let 
us say that the transformed data will be s-dimensional, 
where 𝑠𝑠 < min (𝑛𝑛, 𝑝𝑝). This means replacing the original 
p variables by transformed variables 𝑍𝑍1, … ,𝑍𝑍𝑠𝑠, where 
the i-th variable contains values denoted as 𝑍𝑍𝑖𝑖 =
(𝑍𝑍1𝑖𝑖, … ,𝑍𝑍𝑛𝑛𝑛𝑛)𝑇𝑇 for 𝑖𝑖 = 1, … , 𝑝𝑝. The original measure-
ments are replaced by new transformed measurements 
in the form of linear combinations of the observed 
values. The j-th one is denoted here as �𝑍𝑍𝑗𝑗1, … ,𝑍𝑍𝑗𝑗𝑗𝑗�

𝑇𝑇
 and 

𝑍𝑍𝑗𝑗𝑗𝑗  is obtained as 

   𝑍𝑍𝑗𝑗𝑗𝑗 = (𝑋𝑋𝑗𝑗1, … ,𝑋𝑋𝑗𝑗𝑗𝑗)𝑞𝑞𝑖𝑖 ,   𝑖𝑖 = 1, … , 𝑠𝑠,   𝑗𝑗 = 1, … ,𝑛𝑛.    (2) 

The new variables are mutually uncorrelated, i.e. 

           𝑐𝑐𝑐𝑐𝑐𝑐(𝑍𝑍𝑖𝑖 ,𝑍𝑍𝑘𝑘) = 0,   𝑖𝑖, 𝑘𝑘 = 1, … , 𝑠𝑠,   𝑖𝑖 ≠ 𝑘𝑘.         (3) 

It holds that 

                           𝑣𝑣𝑣𝑣𝑣𝑣 𝑍𝑍1 ≥ ⋯ ≥ 𝑣𝑣𝑣𝑣𝑣𝑣 𝑍𝑍𝑠𝑠,                   (4) 

i.e. the important components in terms of explaining the 
variability of the transformed data are the first ones, and 
moreover it holds that 𝑣𝑣𝑣𝑣𝑣𝑣 𝑍𝑍𝑖𝑖 = 𝜆𝜆𝑖𝑖 for 𝑖𝑖 = 1, … , 𝑠𝑠. The 
contribution of the i-th principal component 
(corresponding to the i-th largest eigenvalue) to 
explaining the total variability in the transformed data 
can be expressed as 𝜆𝜆𝑖𝑖 divided by the total variability 
evaluated as 𝑣𝑣𝑣𝑣𝑣𝑣 𝑋𝑋1 + ⋯+ 𝑣𝑣𝑣𝑣𝑣𝑣 𝑋𝑋𝑝𝑝, where 𝑖𝑖 = 1, …𝑝𝑝. 

Reducing the number of transformed variables only to 
s may bring a remarkable reduction of computational 
costs, especially if the constant s is much smaller than p. 
The user may require the variability of the selected 
principal components to be at least a given percentage 
(e.g. 80 %) of the total variability of the data. This 
determines how to choose an appropriate s. Alterna-
tively, principal components may be computed from the 
empirical correlation matrix, which may be recom-

mended only in case of big differences in variability of 
individual variables [1]. 

The computation of PCA may be performed in 
a numerically stable way also for high-dimensional data, 
although software contains also unstable imple-
mentations. Therefore, specialized packages suitable for 
PCA for high-dimensional data are available, e.g. 
libraries HDMD or FactoMineR of R software [17]. 

Example 1 

We analyze a real data acquired within a multi-factor 
authentication system to electronic health record 
security [18]. We focus on its particular procedure for 
person authentication, which exploits keystroke 
dynamics. Here, we work only with a subset of the data 
from a larger study so that we illustrate some compu-
tations. We consider the data measured only on 2 
probands, who were asked to write the word “kladruby” 
5-times, each time in the habitual speed. The authen-
tication is a classification task to 2 groups with n=10, 
where there are p=15 variables including 8 keystroke 
durations (periods of time of holding a particular key) 
and 7 keystroke latencies (periods of time between 
holding two individual consecutive keystrokes) 
measured in milliseconds. 

We use the classification by means of a support vector 
machine (SVM) classifier [15], which is a machine 
learning tool theoretically founded with a good perfor-
mance also for high-dimensional data [19]. A linear 
SVM is able to classify each observation correctly also 
in a leave-one-out cross validation (LOOCV) study. 
Within a LOOCV, which can be described as an attempt 
for an independent validation, an observation is left out, 
the classification rule is learned over the remaining data 
and the classification of the observation being left out is 
performed. This is repeated over all observations and the 
overall classification accuracy is evaluated, which is 
defined as the percentage of correctly identified 
samples, i.e. ratio of correctly classified observations 
divided by n. In this terminology, the classification 
accuracy of the linear SVM is equal to 1.0 in the 
LOOCV. 

However, it is not possible to perform the classifi-
cation e.g. by means of linear discriminant analysis 
(LDA), which is a popular comprehensible classifier 
based on distances of observations from the means of 
each group [1], because n is smaller than p in this 
example. Let us perform a more detailed study of the 
classification ability of individual principal components. 
This time, the classification will be performed by the 
LDA rather than by the much more complicated SVM 
method. Table 1 evaluates the contribution of the 9 
principal components to the separation between both 
groups based on individual components and pairs of 
components (first together with the second etc.). The 
separation performance here is evaluated as the classi-
fication accuracy of LDA within a LOOCV study. 
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Tab. 1. A study of principal components of the keystroke 
dynamics data in Example 1. Classification accuracy of 
LDA evaluated in a LOOCV study exploiting (1) 
individual principal components, (2) pairs of two princi-
pal components, and (3) the cumulative contribution of 
components {1,…,r} for each r=1,…,9. 

 Classification performance 
Principal 

component Individual Pair Cumulative 

1 0.6 1.0 0.6 
2 1.0 1.0 
3 0.9 

1.0 
1.0 

4 0.7 1.0 
5 0.9 

0.9 
1.0 

6 0.8 1.0 
7 0.7 

0.7 
1.0 

8 0.5 1.0 
9 0.5  1.0 

 

 
Fig. 1: The 1st and 2nd principal component in Example 
1 in group 1 (empty circles) and group 2 (full cirlces). 

 
Fig. 2: The 3rd and 4th principal component in Example 
1 in group 1 (empty circles) and group 2 (full circles). 

The first two principal components are shown in 
Figure 1. The very first principal component does not 
have an ability to separate the two groups, because it is 
highly influenced by a single outlying measurement.  

The following principal components have a better ability 
to separate the two groups. The 3rd and the 4th principal 
components are shown in Figure 2. Their variability 
is smaller but their contribution to the classification is 
higher compared to the very first principal component. 

Keystroke latencies in the word “kladruby” turn out to 
be much more important for the classification task 
compared to keystroke durations. We will denote the 
keystroke latency e.g. between releasing key a and 
pressing key d as ad. The first principal component can 
be (with some level of simplification) interpretetd as 
ad+ru-dr-ib, the second as ad+ru-la. Both contain the 
latencies ad and ru which thus turn out to be crucial for 
the classification task.  

In this example, a small number of components carries 
the information important for the classification. The 
very first one principal component does not, but still this 
enables the PCA to be useful here. Indeed, PCA is often 
(and successfully) used also for data in groups (although 
it is designed as an unsupervised method) [9]. In general, 
however, the interpretation of the principal components, 
may be more difficult. 

MRMR Variable Selection 

Method 

The minimum redundancy maximum relevance 
(MRMR) methodology represents a class of supervised 
variable selection tools [20]. We describe the principles 
for analyzing p-dimensional data coming from two 
groups. The advantage of the approach is that it does not 
incline to selecting strongly correlated variables. The 
method requires to measure relevance of a set of 
variables for the classification task, i.e. to evaluate the 
contribution of a given variable to the classification task. 
Also it is necessary to use a measure of redundancy of 
a set of variables. We use here the mutual information 
as the measure of both relevance and redundancy. This 
however requires all variables in the given dataset to be 
categorical. If these are continuous, they must be first 
transformed to categorical variables. An alternative 
approach would be to use other measures based on 
information theory, specific test statistics or p-values, or 
very simple ad hoc criteria [21]. 

The index corresponding to the group label will be 
denoted as an indicator variable Y (as above). The 
procedure selects gradually one variable after another 
and these form a set denoted as S. First, we need to 
evaluate for each variable (say Z) its relevance for the 
classification task, which will be denoted as Relevance 
({𝑌𝑌,𝑍𝑍}). The very first selected variable maximizes this 
relevance among all variables. Further, we need to 
evaluate for each variable Z, which is not present 
in S yet, the value of 

        Relevance ({𝑌𝑌,𝑍𝑍}) – α · Redundancy (𝑆𝑆 ∪ 𝑍𝑍).   (5) 
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Here, 𝛼𝛼 ∊ (0,1) is a chosen parameter and 𝑆𝑆 ∪ 𝑍𝑍 denotes 
the set of variables included so far in S together with the 
variable Z. Such variable is selected to the set S, which 
maximizes (5). 

We can say that relevance in (5) is penalized by means 
of the redundancy. The selection of variables according 
to (5) is repeated and new variables are added to the set 
of selected variables until a given stopping rule is 
fulfilled. The user may either choose a fixed number of 
relevant variables, or he/she may require that the 
selected variables contribute to explaining more than 
a given percentage (e.g. 90 %) of the inter-class 
variability of the observed data. 

The value of α can be chosen to maximize the 
classification accuracy and a leave-k-out cross valida-
tion represents a popular choice here (mainly with 𝑘𝑘 =
1), which is performed in the following way. For a fixed 
α, there are k randomly chosen observations left out, the 
classifier is computed and the observation left out are 
classified. This is repeated sufficiently many times and 
the overall classification accuracy is evaluted. The 
whole procedure is repeated for various α and such its 
value is selected as the optimal one, which yields the 
maximal classification accuracy. 

Example 2 

The performance of the MRMR variable selection is 
illustrated on a data set from the biometric authen-
tication, which is however different from that of 
Example 1. Again, the probands were asked to type the 
word “kladruby” 5-times at the habitual speed. Here 
however we work with data from 32 probands, so our 
analysis goes beyond the results of [21]. In the practical 
application, one of the 32 individuals identifies 
himself/herself (say as 𝑋𝑋𝑌𝑌) and types the password. It 
would be possible to consider a classification task to 32 
groups. Nevertheless, the task within the practical 
problem is different. An individual claims to be a given 
person (say XY) and the system has the aim to verify if 
this is true. Such authentication (rather than recognition) 
task is a classification problem to assign the individual 
to one of the 𝐾𝐾 = 2 groups performed with p=15 and 
n=32*5=160. 

If all variables are used with a linear SVM, the 
classification accuracy is equal to 0.93. The following 
analysis is peformed with the LDA classifier, which is 
much simpler than the SVM approach. If the 
dimensionality of the data is reduced, the SVM classifier 
has a tendency to overfitting, because it is not designed 
for data with a small n. 

If only 4 variables selected by MRMR are used, the 
classification accuracy of the LDA is 0.93 in a LOOCV 
study. Keystroke latencies again turn out to be more 
important than keystroke durations by the MRMR 
criterion. The most important variables according to the 
MRMR criterion are ad, ru, dr, and ub. If only the 
variable ad is used, the classification accuracy of the 

LDA linear SVM in the LOOCV is 0.57. If ad and ru 
are used together, it increases to 0.82. The first three of 
these variables yield 0.90 and all four yield already 0.93. 
On the whole, MRMR does not improve classification 
but loses only a little and allows to find the most relevant 
variables for the classification task.  

One may ask about an alternative idea based on 
selecting only variables with the largest variability. This 
would be an unsupervised approach. The variables with 
the largest variability are ub and by, but constructing 
a classification rule based mainly on them would be 
misleading. LDA using these two variables gives 
namely the classification accuracy 0.55 in a LOOCV. 

Nearest Shrunken Centroid (NSC) 

Method 
The method called Shrunken Nearest Centroid (NSC) 

is a supervised classification method proposed by [22] 
originally for high-dimensional data in molecular 
genetics. In contrast to previously describe methods 
reducing the dimensionality prior to classification tasks, 
the NSC performs a variable selection intrinsically (as 
its integral part). Thus, the resulting classification rule 
depends only on a certain number of variables (i.e. 
induces sparsity), while the influence of the remaining 
variables is suppressed, possibly even to zero.  

The task is to learn a classification rule to K groups 
and the classification rule of the NSC is based on 
distances of a new observation Z from the centroid of 
each of the groups.  The centroid (prototype) denoted as 
𝑋𝑋�𝑖𝑖𝑖𝑖 for the i-th variable in the k-th group will be 
explained below. The NSC assigns a new observation Z 
to such group, for which 

                       (𝑍𝑍−𝑋𝑋
�𝑖𝑖𝑖𝑖)2

(𝑠𝑠𝑖𝑖+𝑠𝑠0)2
− 2 log 𝑝𝑝𝑘𝑘                            (6) 

is minimal. Here, 𝑠𝑠𝑖𝑖 is the standard deviation of the i-th 
variable, 𝑠𝑠0 is a positive constant, and 𝑝𝑝𝑘𝑘 is a prior 
probability of observing from the k-th group. The 
centroid 𝑋𝑋�𝑖𝑖𝑖𝑖 has the form of a regularized mean, i.e. 
a modification of the arithmetic mean shrunken towards 
the overall mean (across groups). The shrinkage 
phenomenon is illustrated in Figure 3 for artificial data 
and two classes. In general, shrinkage estimators are 
known to possess favorable robustness properties, are 
resistant to local data contamination by outliers. The 
regularized mean represents a simple version of 
a broader class of lasso estimators [15]. 

The value of 𝑋𝑋�𝑖𝑖𝑖𝑖 depends on a parameter λ called 
shrinkage intensity, which determines the level of 
shrinkage of the mean towards the overall mean. The 
classification rule does not depend on all variables, but 
some are ignored, and a larger λ leads to ignoring more 
variables. The NSC arranges all variables according 
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to their contribution to the classification task [22]. 
A LOOCV can be applied to find a suitable value of λ, 
which determines the level of shrinkage of the estimator. 
Such value is selected, which leads to the maximal 
classification accuracy. If there are several values of the 
threshold yielding the same accuracy, then the minimal 
value among them is selected. Numerical experiments 
of [22] revealed advantages of the NSC over standard 
methods especially when there are more than two 
classes. 

 
Fig. 3: Explanation of the NSC classifier on an artifical 
dataset with data in two groups. The arithmetic mean 
(center of gravity, shown as a full circle) of each group 
is shrunken towards to the overall mean (across 
groups). 

Example 3 

We analyze a popular benchmarking dataset of pros-
tate cancer metabolomic data [23] of p=518 metabolites 
measured over two groups of patients, who are either 
those with a benign prostate cancer (16 patients) or with 
other cancer types (26 patients). The dataset is publicly 
available in the MPINet library of R package [24]. 

Tab. 2. Results of Example 3. Classification accuracy 
obtained with the NSC for the metabolomic profiles 
dataset for various values of λ, i.e. for various numbers 
of variables relevant for the classification rule. 

Value of λ 0.29 0.24 0.17 0.10 0.05 
Number  
of variables 10 21 53 102 518 

Classification 
accuracy 0.75 0.86 0.90 0.91 0.92 

The results of the NSC for different choices of λ are 
shown in Table 2. The LOOCV finds the value λ=0.24 
as the optimal and uses 21 variables. The resulting 
classification accuracy stays relatively little behind the 
accuracy obtained with all p=518 variables. The user 
does not have to rely on the value of λ found by the cross 
validation, but may choose e.g. λ=0.17 if classification 
accuracy of (at least) 0.90 is preferable. Nevertheless, 

the cross validation is popular in this context, because it 
is objective and able to find a reasonable compromise 
between the two contradictory requirements, i.e. a clas-
sification accuracy and a small number of relevant 
variables. 

Conclusions 

This paper overviews principles and types of dimen-
sionality reduction approaches, presents three selected 
methods important for biomedical applications and 
illustrates their performance on real datasets. The 
examples are motivated by our attempt to persuade the 
reader about the potential of reducing the dimensionality 
of multivariate data. Dimensionality reduction is 
claimed to be beneficial for various types of data and 
various analysis tasks. 

In the keystroke dynamics examples of this paper, 
a small set of variables or their components turns out to 
carry the majority of the information relevant for the 
classification task. Also for the high-dimensional 
metabolomic data [23], a set of 21 variables seems 
sufficient. 

In the presented datasets, the data are observed in two 
groups and the task is to learn a classification rule over 
a training dataset. The dimensionality reduction itself 
does not improve the classification results here, but still 
is very beneficial in these examples. It namely allows to 
use much more suitable classification methods in terms 
of comprehensibility only at the price of a small 
reduction of the classification performance and (at least 
for some methods) to improve the interpretation of 
subsequent data analysis. 

Numerous available tools for dimensionality 
reduction, which exceed the scope of this paper, belong 
to the important classes mentioned here: feature 
extraction, prior variable selection, or sparse variable 
selection. Particularly for high-dimensional data, there 
remains an unflagging interest in proposing new 
methods, especially exploiting principles of sparsity 
explained on the example of the NSC in this paper. 
Other recent research topics include combination of 
various data types [25] or comparisons of various 
dimensionality reduction methods, however usually 
performed in more specific tasks [26] or within only 
a narrower class of dimensionality reduction tools [27]. 

Acknowledgements 

The work was partially supported by the PROGRESS 
Q25, Charles University, Prague, and by the project 
NV15-29835A of the Czech Health Research Council. 

References 



 

 
35 

 

Lekar a technika – Clinician and Technology 2018, vol. 48(1), pp. 29–35 
ISSN 0301-5491 (Print), ISSN 2336-5552 (Online) 

REVIEW 

[1] Rencher, A. C.: Methods of multivariate analysis. Second edn. 
Wiley, New York, 2002. 

[2] Dziuda, D. M.: Data mining for genomics and proteomics: 
Analysis of gene and protein expression data. Wiley, New York, 
2010. 

[3] Fan, J., Lv, J.: A selective overview of variable selection in high 
dimensional feature space. Statistica Sinica, 2010, vol. 20, pp. 
101–148. 

[4] He, M., Petoukhov, S.: Mathematics of bioinformatics: Theory, 
methods and applications. Wiley, Hoboken, 2011. 

[5] Luo, J., Wu, M., Gopukumar, D., Zhao, Y.: Big data application 
in biomedical research and health care: A literature review. 
Biomedical Informatics Insights, 2016, vol. 8, pp. 1–10. 

[6] Zvárová, J., Veselý, A., Vajda, I.: Data, information and 
knowledge. In Berka, P., Rauch, J., Zighed, D. (eds.): Data 
mining and medical knowledge management: Cases and 
applications standards. IGI Global, Hershey, 2009, pp. 1–36. 

[7] Venot, A., Burgun, A., Quantin, C. (eds.): Medical informatics, 
e-health. Fundamentals and applications. Springer, Paris, 2014. 

[8] Tan, Y., Shi, L., Tong, W., Hwang, G. T. G., Wang, C.: Multi-
class tumor classification by discriminant partial least squares 
using microarray gene expression data and assessment of 
classification models. Computational Biology and Chemistry, 
2004, vol. 28, pp. 235–244. 

[9] Duintjer Tebbens, J., Schlesinger, P.: Improving implementation 
of linear discriminant analysis for the high-dimensional/small 
sample size problem. Computational Statistics and Data 
Analysis, 2007, vol. 52, pp. 423–437. 

[10] Bartenhagen, C., Klein, H. U., Ruckert, C., Jiang, X., Dugas, M.: 
Comparative study of unsupervised dimension reduction tech-
niques for the visualization of microarray gene expression data. 
BMC Bioinformatics, 2010, vol. 11, Article 567. 

[11] Matloff, N.: Statistical regression and classification. From 
linear models to machine learning. CRC Press, Boca Raton, 
2017. 

[12] Haufe, S., Dähne, S, Nikulin, V. V.: Dimensionality reduction 
for the analysis of brain oscillations. NeuroImage, 2014, 
vol. 101, pp. 583–597. 

[13] Lee, J., Ciccarello, S., Acharjee, M., Das, K.: Dimension reduc-
tion of gene expression data. Journal of Statistical Theory and 
Practice, 2018, online first, in press. 

[14] Tan, C. W., Kumar, A.: Unified framework for automated iris 
segmentation using distantly acquired face images. IEEE 
Transactions on Image Processing, 2012, vol. 21, pp. 4068–4079. 

[15] Hastie, T., Tibshirani, R., Wainwright, M.: Statistical learning 
with sparsity: The lasso and generalizations. CRC Press, Boca 
Raton, 2015. 

[16] Bushel, P., Wolfinger, R. D., Gibson. G.: Simultaneous clus-
tering of gene expression data with clinical chemistry and 
pathological evaluations reveals phenotypic prototypes. BMC 
Systems Biology, 2007, vol. 1, Article 15. 

[17] McFerrin, L.: Package HDMD. R package version 1.2 (2013). 
[18] Schlenker, A., Tichý, T.: A new approach to the evaluation of 

local muscular load while typing on a keyboard. Central 
European Journal of Public Health 2017, vol. 25, pp. 255–260. 

[19] Vapnik, V. N.: The nature of statistical learning theory. Second 
edn. Springer, New York, 2000. 

[20] Ding, C., Peng, H.: Minimum redundancy feature selection from 
microarray gene expression data. Journal of Bioinformatics and 
Computational Biology, 2005, vol. 3, pp. 185–205. 

[21] Kalina, J., Schlenker, A.: A robust supervised variable selection 
for noisy high-dimensional data. BioMed Research International, 
2015, vol. 2015, Article 320385. 

[22] Tibshirani, R., Hastie, T., Narasimhan, B., Chu, G.: Class predic-
tion by nearest shrunken centroids, with applications to DNA 
microarrays. Statistical Science, 2003, vol. 18, pp. 104–117. 

[23] Sreekumar, A. et al.: Metabolomic profiles delineate potential 
role for sarcosine in prostate cancer progression. Nature, 2009, 
vol. 457, pp. 910–914. 

[24] Xu, Y., Li, C., Li, X.: Package MPINet. R package version 1.0 
(2015). 

[25] Viswanath, S. E., Tiwari, P., Lee, G., Madabhushi, A., Alz-
heimer’s Disease Neuroimaging Initiative: Dimensionality 
reduction-based fusion approaches for imaging and non-
imaging biomedical data: Concepts, worksflow, and use-cases. 
BMC Medical Imaging, 2017, vol. 17, Article 2. 

[26] Harikumar, R., Kumar, P. S.: Dimensionality reduction tech-
niques for processing epileptic encephalographic signals. 
Biomedical & Pharmacology Journal, 2015, vol. 8, pp. 103–106. 

[27] Xie, H., Li, J., Zhang, Q., Wang, Y.: Comparison among 
dimensionality reduction techniques based on Random 
Projection for cancer classification. Computational Biology and 
Chemistry, 2016, vol. 65, 165–172. 

RNDr. Jan Kalina, Ph.D. 
Institute of Computer Science of the Czech Academy of 

Sciences 
Pod Vodárenskou věží 2, 182 07 Praha 8 

Czech Republic 
E-mail: kalina@cs.cas.cz 

Ing. Anna Schlenker 
Institute of Hygiene and Epidemiology 

First Faculty of Medicine  
Charles University 

Studničkova 7, 128 00 Praha 2 
& 

Faculty of Biomedical Engineering 
Czech Technical University in Prague 

nám. Sítná 3105, 272 01 Kladno 
Czech Republic 

E-mail: schlenker.anna@gmail.com

 

mailto:schlenker.anna@gmail.com

