Skip to main content

In Cell NMR Spectroscopy: Investigation of G-Quadruplex Structures Inside Living Xenopus laevis Oocytes

  • Protocol
  • First Online:
G-Quadruplex Nucleic Acids

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2035))

Abstract

G-quadruplexes are inherently polymorphic nucleic acid structures. Their folding topology depends on the nucleic acid primary sequence and on physical–chemical environmental factors. Hence, it remains unclear if a G-quadruplex topology determined in the test tube (in vitro) will also form in vivo. Characterization of G-quadruplexes in their native environment has been proposed as an efficient strategy to tackle this issue. So far, characterization of G-quadruplex structures in living cells has relied exclusively on the use of Xenopus laevis oocytes as a eukaryotic cell model system. Here, we describe the protocol for the preparation of X. laevis oocytes for studies of G-quadruplexes as well as other nucleic acids motifs under native conditions using in-cell NMR spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Selenko P, Serber Z, Gadea B, Ruderman J, Wagner G (2006) Quantitative NMR analysis of the protein G B1 domain in Xenopus laevis egg extracts and intact oocytes. Proc Natl Acad Sci U S A 103:11904–11909

    Article  CAS  Google Scholar 

  2. Serber Z, Selenko P, Hansel R, Reckel S, Lohr F, Ferrell JE Jr, Wagner G, Dotsch V (2006) Investigating macromolecules inside cultured and injected cells by in-cell NMR spectroscopy. Nat Protoc 1:2701–2709

    Article  CAS  Google Scholar 

  3. Hansel R, Foldynova-Trantirkova S, Lohr F, Buck J, Bongartz E, Bamberg E, Schwalbe H, Dotsch V, Trantirek L (2009) Evaluation of parameters critical for observing nucleic acids inside living Xenopus laevis oocytes by in-cell NMR spectroscopy. J Am Chem Soc 131:15761–15768

    Article  Google Scholar 

  4. Bao HL, Ishizuka T, Sakamoto T, Fujimoto K, Uechi T, Kenmochi N, Xu Y (2017) Characterization of human telomere RNA G-quadruplex structures in vitro and in living cells using 19F NMR spectroscopy. Nucleic Acids Res 45:5501–5511

    Article  CAS  Google Scholar 

  5. Salgado GF, Cazenave C, Kerkour A, Mergny JL (2015) G-quadruplex DNA and ligand interaction in living cells using NMR spectroscopy. Chem Sci 6:3314–3320

    Article  CAS  Google Scholar 

  6. Hansel R, Foldynova-Trantirkova S, Dotsch V, Trantirek L (2013) Investigation of quadruplex structure under physiological conditions using in-cell NMR. Top Curr Chem 330:47–65

    Article  Google Scholar 

  7. Hansel R, Luh LM, Corbeski I, Trantirek L, Dotsch V (2014) In-cell NMR and EPR spectroscopy of biomacromolecules. Angew Chem Int Ed Engl 53:10300–10314

    Article  Google Scholar 

  8. Hansel R, Lohr F, Foldynova-Trantirkova S, Bamberg E, Trantirek L, Dotsch V (2011) The parallel G-quadruplex structure of vertebrate telomeric repeat sequences is not the preferred folding topology under physiological conditions. Nucleic Acids Res 39:5768–5775

    Article  Google Scholar 

  9. Azarkh M, Okle O, Singh V, Seemann IT, Hartig JS, Dietrich DR, Drescher M (2011) Long-range distance determination in a DNA model system inside Xenopus laevis oocytes by in-cell spin-label EPR. Chembiochem 12:1992–1995

    Article  CAS  Google Scholar 

  10. Krstic I, Hansel R, Romainczyk O, Engels JW, Dotsch V, Prisner TF (2011) Long-range distance measurements on nucleic acids in cells by pulsed EPR spectroscopy. Angew Chem Int Ed Engl 50:5070–5074

    Article  CAS  Google Scholar 

  11. Yamaoki Y, Kiyoishi A, Miyake M, Kano F, Murata M, Nagata T, Katahira M (2018) The first successful observation of in-cell NMR signals of DNA and RNA in living human cells. Phys Chem Chem Phys 20:2982–2985

    Article  CAS  Google Scholar 

  12. Dzatko S, Krafcikova M, Hansel-Hertsch R, Fessl T, Fiala R, Loja T, Krafcik D, Mergny JL, Foldynova-Trantirkova S, Trantirek L (2018) Evaluation of the stability of DNA i-motifs in the nuclei of living mammalian cells. Angew Chem Int Ed Engl 57:2165–2169

    Article  CAS  Google Scholar 

  13. Thongwichian R, Selenko P (2012) In-cell NMR in Xenopus laevis oocytes. Methods Mol Biol 895:33–41

    Article  CAS  Google Scholar 

  14. Bodart JF, Wieruszeski JM, Amniai L, Leroy A, Landrieu I, Rousseau-Lescuyer A, Vilain JP, Lippens G (2008) NMR observation of Tau in Xenopus oocytes. J Magn Reson 192:252–257

    Article  CAS  Google Scholar 

  15. Selenko P, Wagner G (2007) Looking into live cells with in-cell NMR spectroscopy. J Struct Biol 158:244–253

    Article  CAS  Google Scholar 

  16. Crane RF, Ruderman JV (2006) Using Xenopus oocyte extracts to study signal transduction. Methods Mol Biol 322:435–443

    Article  CAS  Google Scholar 

  17. Murray AW (1991) Cell cycle extracts. Methods Cell Biol 36:581–605

    Article  CAS  Google Scholar 

  18. Sakai T, Tochio H, Tenno T, Ito Y, Kokubo T, Hiroaki H, Shirakawa M (2006) In-cell NMR spectroscopy of proteins inside Xenopus laevis oocytes. J Biomol NMR 36:179–188

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Czech Science Foundation (17-12075S), European Regional Development Fund (SYMBIT: CZ.02.1.01/0.0/0.0/15_003/0000477), Horizon 2020 Program of the EU (iNEXT: grant agreement 653706), and from the MEYS CR (CEITEC 2020 LQ1601).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lukas Trantirek or Silvie Foldynova-Trantirkova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Krafcikova, M., Hänsel-Hertsch, R., Trantirek, L., Foldynova-Trantirkova, S. (2019). In Cell NMR Spectroscopy: Investigation of G-Quadruplex Structures Inside Living Xenopus laevis Oocytes. In: Yang, D., Lin, C. (eds) G-Quadruplex Nucleic Acids. Methods in Molecular Biology, vol 2035. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9666-7_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9666-7_25

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9665-0

  • Online ISBN: 978-1-4939-9666-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics