Skip to main content

Hydrogen/Deuterium Exchange Mass Spectrometry of Heme-Based Oxygen Sensor Proteins

  • Protocol
  • First Online:
Oxygen Sensing

Abstract

Hydrogen/deuterium exchange (HDX) is a well-established analytical technique that enables monitoring of protein dynamics and interactions by probing the isotope exchange of backbone amides. It has virtually no limitations in terms of protein size, flexibility, or reaction conditions and can thus be performed in solution at different pH values and temperatures under controlled redox conditions. Thanks to its coupling with mass spectrometry (MS), it is also straightforward to perform and has relatively high throughput, making it an excellent complement to the high-resolution methods of structural biology. Given the recent expansion of artificial intelligence-aided protein structure modeling, there is considerable demand for techniques allowing fast and unambiguous validation of in silico predictions; HDX-MS is well-placed to meet this demand. Here we present a protocol for HDX-MS and illustrate its use in characterizing the dynamics and structural changes of a dimeric heme-containing oxygen sensor protein as it responds to changes in its coordination and redox state. This allowed us to propose a mechanism by which the signal (oxygen binding to the heme iron in the sensing domain) is transduced to the protein’s functional domain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shimizu T, Huang D, Yan F et al (2015) Gaseous O 2, NO, and CO in signal transduction: structure and function relationships of heme-based gas sensors and heme-redox sensors. Chem Rev 115:6491–6533. https://doi.org/10.1021/acs.chemrev.5b00018

    Article  CAS  PubMed  Google Scholar 

  2. Martínková M, Kitanishi K, Shimizu T (2013) Heme-based globin-coupled oxygen sensors: linking oxygen binding to functional regulation of diguanylate cyclase, histidine kinase, and methyl-accepting chemotaxis. J Biol Chem 288:27702–27711. https://doi.org/10.1074/jbc.R113.473249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Walker JA, Rivera S, Weinert EE (2017) Mechanism and role of globin-coupled sensor signalling. In: Advances in Microbial Physiology. Elsevier, pp 133–169

    Google Scholar 

  4. Igarashi J, Murase M, Iizuka A et al (2008) Elucidation of the heme binding site of heme-regulated eukaryotic initiation factor 2α kinase and the role of the regulatory motif in Heme sensing by spectroscopic and catalytic studies of mutant proteins. J Biol Chem 283:18782–18791. https://doi.org/10.1074/jbc.M801400200

    Article  CAS  PubMed  Google Scholar 

  5. Zhang W, Phillips GN (2003) Structure of the oxygen sensor in Bacillus subtilis. Structure 11:1097–1110. https://doi.org/10.1016/S0969-2126(03)00169-2

    Article  CAS  PubMed  Google Scholar 

  6. Yamada S, Sugimoto H, Kobayashi M et al (2009) Structure of PAS-linked histidine kinase and the response regulator complex. Structure 17:1333–1344. https://doi.org/10.1016/j.str.2009.07.016

    Article  CAS  PubMed  Google Scholar 

  7. Stranava M, Man P, Skálová T et al (2017) Coordination and redox state–dependent structural changes of the heme-based oxygen sensor AfGcHK associated with intraprotein signal transduction. J Biol Chem 292:20921–20935. https://doi.org/10.1074/jbc.M117.817023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Skalova T, Lengalova A, Dohnalek J et al (2020) Disruption of the dimerization interface of the sensing domain in the dimeric heme-based oxygen sensor AfGcHK abolishes bacterial signal transduction. J Biol Chem 295:1587–1597. https://doi.org/10.1074/jbc.RA119.011574

    Article  CAS  PubMed  Google Scholar 

  9. Kang Y, Liu R, Wu J-X, Chen L (2019) Structural insights into the mechanism of human soluble guanylate cyclase. Nature 574:206–210. https://doi.org/10.1038/s41586-019-1584-6

    Article  CAS  PubMed  Google Scholar 

  10. Poulos TL, Lanzilotta WN, Schuller DJ et al (2000) Structure of the CO sensing transcription activator CooA. Nat Struct Biol 7:876–880. https://doi.org/10.1038/82820

    Article  CAS  PubMed  Google Scholar 

  11. Miksanova M, Igarashi J, Minami M et al (2006) Characterization of heme-regulated eIF2α kinase: roles of the N-terminal domain in the oligomeric state, heme binding, catalysis, and inhibition. Biochemistry 45:9894–9905. https://doi.org/10.1021/bi060556k

    Article  CAS  PubMed  Google Scholar 

  12. Mukai K, Shimizu T, Igarashi J (2011) Phosphorylation of a heme-regulated eukaryotic initiation factor 2αkinase enhances the interaction with heat-shock protein 90 and substantially upregulates kinase activity. Protein Pept Lett 18:1251–1257. https://doi.org/10.2174/092986611797642733

    Article  CAS  PubMed  Google Scholar 

  13. Igarashi J, Sasaki T, Kobayashi N et al (2011) Autophosphorylation of heme-regulated eukaryotic initiation factor 2α kinase and the role of the modification in catalysis: autophosphorylation of an HRI. FEBS J 278:918–928. https://doi.org/10.1111/j.1742-4658.2011.08007.x

    Article  CAS  PubMed  Google Scholar 

  14. Rout MP, Sali A (2019) Principles for integrative structural biology studies. Cell 177:1384–1403. https://doi.org/10.1016/j.cell.2019.05.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kitanishi K, Kobayashi K, Uchida T et al (2011) Identification and functional and spectral characterization of a globin-coupled histidine kinase from Anaeromyxobacter sp. Fw109-5. J Biol Chem 286:35522–35534. https://doi.org/10.1074/jbc.M111.274811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Fojtikova V, Stranava M, Vos MH et al (2015) Kinetic analysis of a globin-coupled histidine kinase, Af GcHK: effects of the Heme iron complex, response regulator, and metal cations on autophosphorylation activity. Biochemistry 54:5017–5029. https://doi.org/10.1021/acs.biochem.5b00517

    Article  CAS  PubMed  Google Scholar 

  17. Fojtikova V, Bartosova M, Man P et al (2016) Effects of hydrogen sulfide on the heme coordination structure and catalytic activity of the globin-coupled oxygen sensor AfGcHK. Biometals 29:715–729. https://doi.org/10.1007/s10534-016-9947-z

    Article  CAS  PubMed  Google Scholar 

  18. Stranava M, Martínek V, Man P et al (2016) Structural characterization of the heme-based oxygen sensor, Af GcHK, its interactions with the cognate response regulator, and their combined mechanism of action in a bacterial two-component signaling system: hydrogen-deuterium exchange study on globin-coupled histidine kinase. Proteins Struct Funct Bioinforma 84:1375–1389. https://doi.org/10.1002/prot.25083

    Article  CAS  Google Scholar 

  19. James EI, Murphree TA, Vorauer C et al (2021) Advances in hydrogen/deuterium exchange mass spectrometry and the pursuit of challenging biological systems. Chem Rev 122:7562. https://doi.org/10.1021/acs.chemrev.1c00279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Dülfer J, Kadek A, Kopicki J-D et al (2019) Structural mass spectrometry goes viral. In: Advances in Virus Research. Elsevier, pp 189–238

    Google Scholar 

  21. Snijder J, Burnley RJ, Wiegard A et al (2014) Insight into cyanobacterial circadian timing from structural details of the KaiB-KaiC interaction. Proc Natl Acad Sci 111:1379–1384. https://doi.org/10.1073/pnas.1314326111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Engen JR, Wales TE (2015) Analytical aspects of hydrogen exchange mass spectrometry. Annu Rev Anal Chem 8:127–148. https://doi.org/10.1146/annurev-anchem-062011-143113

    Article  CAS  Google Scholar 

  23. Engen JR, Botzanowski T, Peterle D et al (2021) Developments in hydrogen/deuterium exchange mass spectrometry. Anal Chem 93:567–582. https://doi.org/10.1021/acs.analchem.0c04281

    Article  CAS  PubMed  Google Scholar 

  24. Narang D, Lento CJ, Wilson D (2020) HDX-MS: an analytical tool to capture protein motion in action. Biomedicine 8:224. https://doi.org/10.3390/biomedicines8070224

    Article  CAS  Google Scholar 

  25. Bai Y, Milne JS, Mayne L, Englander SW (1993) Primary structure effects on peptide group hydrogen exchange. Proteins Struct Funct Genet 17:75–86. https://doi.org/10.1002/prot.340170110

    Article  CAS  PubMed  Google Scholar 

  26. Wang L, Pan H, Smith DL (2002) Hydrogen exchange-mass spectrometry. Mol Cell Proteomics 1:132–138. https://doi.org/10.1074/mcp.M100009-MCP200

    Article  CAS  PubMed  Google Scholar 

  27. Kadek A, Mrazek H, Halada P et al (2014) Aspartic protease nepenthesin-1 as a tool for digestion in hydrogen/deuterium exchange mass spectrometry. Anal Chem 86:4287–4294. https://doi.org/10.1021/ac404076j

    Article  CAS  PubMed  Google Scholar 

  28. Filandrova R, Kavan D, Kadek A et al (2021) Studying protein–DNA interactions by hydrogen/deuterium exchange mass spectrometry. In: Poterszman A (ed) Multiprotein complexes. Springer, New York, pp 193–219

    Chapter  Google Scholar 

  29. Trcka F, Durech M, Man P et al (2014) The assembly and intermolecular properties of the Hsp70-Tomm34-Hsp90 molecular chaperone complex. J Biol Chem 289:9887–9901. https://doi.org/10.1074/jbc.M113.526046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kavan D, Man P (2011) MSTools—web based application for visualization and presentation of HXMS data. Int J Mass Spectrom 302:53–58. https://doi.org/10.1016/j.ijms.2010.07.030

    Article  CAS  Google Scholar 

  31. Hamuro Y, Coales SJ (2018) Optimization of feasibility stage for hydrogen/deuterium exchange mass spectrometry. J Am Soc Mass Spectrom 29:623–629. https://doi.org/10.1007/s13361-017-1860-3

    Article  CAS  PubMed  Google Scholar 

  32. Kan Z-Y, Walters BT, Mayne L, Englander SW (2013) Protein hydrogen exchange at residue resolution by proteolytic fragmentation mass spectrometry analysis. Proc Natl Acad Sci 110:16438–16443. https://doi.org/10.1073/pnas.1315532110

    Article  PubMed  PubMed Central  Google Scholar 

  33. Wales TE, Fadgen KE, Eggertson MJ, Engen JR (2017) Subzero Celsius separations in three-zone temperature controlled hydrogen deuterium exchange mass spectrometry. J Chromatogr A 1523:275–282. https://doi.org/10.1016/j.chroma.2017.05.067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Rand KD, Pringle SD, Morris M, Brown JM (2012) Site-specific analysis of gas-phase hydrogen/deuterium exchange of peptides and proteins by electron transfer dissociation. Anal Chem 84:1931–1940. https://doi.org/10.1021/ac202918j

    Article  CAS  PubMed  Google Scholar 

  35. Mistarz UH, Bellina B, Jensen PF et al (2018) UV photodissociation mass spectrometry accurately localize sites of backbone deuteration in peptides. Anal Chem 90:1077–1080. https://doi.org/10.1021/acs.analchem.7b04683

    Article  CAS  PubMed  Google Scholar 

  36. Kadek A, Kavan D, Marcoux J et al (2017) Interdomain electron transfer in cellobiose dehydrogenase is governed by surface electrostatics. Biochim Biophys Acta BBA – Gen Subj 1861:157–167. https://doi.org/10.1016/j.bbagen.2016.11.016

    Article  CAS  Google Scholar 

  37. Filandrová R, Vališ K, Černý J et al (2021) Motif orientation matters: structural characterization of TEAD1 recognition of genomic DNA. Structure 29:345–356.e8. https://doi.org/10.1016/j.str.2020.11.018

    Article  CAS  PubMed  Google Scholar 

  38. Filandr F, Kavan D, Kracher D et al (2020) Structural dynamics of lytic polysaccharide monooxygenase during catalysis. Biomol Ther 10:242. https://doi.org/10.3390/biom10020242

    Article  CAS  Google Scholar 

  39. Guo C, Steinberg LK, Henderson JP, Gross ML (2020) Organic solvents for enhanced proteolysis of stable proteins for hydrogen–deuterium exchange mass spectrometry. Anal Chem 92:11553–11557. https://doi.org/10.1021/acs.analchem.0c02194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Cline DJ, Redding SE, Brohawn SG et al (2004) New water-soluble phosphines as reductants of peptide and protein disulfide bonds: reactivity and membrane permeability. Biochemistry 43:15195–15203. https://doi.org/10.1021/bi048329a

    Article  CAS  PubMed  Google Scholar 

  41. Kadek A, Tretyachenko V, Mrazek H et al (2014) Expression and characterization of plant aspartic protease nepenthesin-1 from Nepenthes gracilis. Protein Expr Purif 95:121–128. https://doi.org/10.1016/j.pep.2013.12.005

    Article  CAS  PubMed  Google Scholar 

  42. Zhang Z, Smith DL (1993) Determination of amide hydrogen exchange by mass spectrometry: a new tool for protein structure elucidation: amide hydrogen exchange by mass spectrometry. Protein Sci 2:522–531. https://doi.org/10.1002/pro.5560020404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Cravello L, Lascoux D, Forest E (2003) Use of different proteases working in acidic conditions to improve sequence coverage and resolution in hydrogen/deuterium exchange of large proteins. Rapid Commun Mass Spectrom 17:2387–2393. https://doi.org/10.1002/rcm.1207

    Article  CAS  PubMed  Google Scholar 

  44. Rosa JJ, Richards FM (1979) An experimental procedure for increasing the structural resolution of chemical hydrogen-exchange measurements on proteins: application to ribonuclease S peptide. J Mol Biol 133:399–416. https://doi.org/10.1016/0022-2836(79)90400-5

    Article  CAS  PubMed  Google Scholar 

  45. Ahn J, Jung MC, Wyndham K et al (2012) Pepsin immobilized on high-strength hybrid particles for continuous flow online digestion at 10 000 psi. Anal Chem 84:7256–7262. https://doi.org/10.1021/ac301749h

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Vankova P, Salido E, Timson DJ et al (2019) A dynamic core in human NQO1 controls the functional and stability effects of ligand binding and their communication across the enzyme dimer. Biomol Ther 9:728. https://doi.org/10.3390/biom9110728

    Article  CAS  Google Scholar 

  47. Man P, Montagner C, Vitrac H et al (2011) Accessibility changes within diphtheria toxin T domain upon membrane penetration probed by hydrogen exchange and mass spectrometry. J Mol Biol 414:123–134. https://doi.org/10.1016/j.jmb.2011.09.042

    Article  CAS  PubMed  Google Scholar 

  48. Man P, Montagner C, Vernier G et al (2007) Defining the interacting regions between apomyoglobin and lipid membrane by hydrogen/deuterium exchange coupled to mass spectrometry. J Mol Biol 368:464–472. https://doi.org/10.1016/j.jmb.2007.02.014

    Article  CAS  PubMed  Google Scholar 

  49. Tsiatsiani L, Akeroyd M, Olsthoorn M, Heck AJR (2017) Aspergillus niger prolyl endoprotease for hydrogen–deuterium exchange mass spectrometry and protein structural studies. Anal Chem 89:7966–7973. https://doi.org/10.1021/acs.analchem.7b01161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ahn J, Cao M-J, Yu YQ, Engen JR (2013) Accessing the reproducibility and specificity of pepsin and other aspartic proteases. Biochim Biophys Acta BBA – Proteins Proteomics 1834:1222–1229. https://doi.org/10.1016/j.bbapap.2012.10.003

    Article  CAS  PubMed  Google Scholar 

  51. Marcoux J, Thierry E, Vivès C et al (2010) Investigating alternative acidic proteases for H/D exchange coupled to mass spectrometry: Plasmepsin 2 but not plasmepsin 4 is active under quenching conditions. J Am Soc Mass Spectrom 21:76–79. https://doi.org/10.1016/j.jasms.2009.09.005

    Article  CAS  PubMed  Google Scholar 

  52. Marcoux J, Man P, Petit-Haertlein I et al (2010) p47 molecular activation for assembly of the neutrophil NADPH oxidase complex. J Biol Chem 285:28980–28990. https://doi.org/10.1074/jbc.M110.139824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Macakova E, Kopecka M, Kukacka Z et al (2013) Structural basis of the 14-3-3 protein-dependent activation of yeast neutral trehalase Nth1. Biochim Biophys Acta BBA – Gen Subj 1830:4491–4499. https://doi.org/10.1016/j.bbagen.2013.05.025

    Article  CAS  Google Scholar 

  54. Nirudodhi SN, Sperry JB, Rouse JC, Carroll JA (2017) Application of dual protease column for HDX-MS analysis of monoclonal antibodies. J Pharm Sci 106:530–536. https://doi.org/10.1016/j.xphs.2016.10.023

    Article  CAS  PubMed  Google Scholar 

  55. Hamuro Y, Zhang T (2019) High-resolution HDX-MS of cytochrome c using pepsin/fungal protease type XIII mixed bed column. J Am Soc Mass Spectrom 30:227–234. https://doi.org/10.1007/s13361-018-2087-7

    Article  CAS  PubMed  Google Scholar 

  56. Rey M, Man P, Clémençon B et al (2010) Conformational dynamics of the bovine mitochondrial ADP/ATP carrier isoform 1 revealed by hydrogen/deuterium exchange coupled to mass spectrometry. J Biol Chem 285:34981–34990. https://doi.org/10.1074/jbc.M110.146209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Masson GR, Burke JE, Ahn NG et al (2019) Recommendations for performing, interpreting and reporting hydrogen deuterium exchange mass spectrometry (HDX-MS) experiments. Nat Methods 16:595–602. https://doi.org/10.1038/s41592-019-0459-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Hamuro Y (2021) Tutorial: chemistry of hydrogen/deuterium exchange mass spectrometry. J Am Soc Mass Spectrom 32:133–151. https://doi.org/10.1021/jasms.0c00260

    Article  CAS  PubMed  Google Scholar 

  59. Hoofnagle AN, Resing KA, Ahn NG (2004) Practical methods for deuterium exchange/mass spectrometry. In: MAP kinase signaling protocols. Humana Press, New Jersey, pp 283–298

    Chapter  Google Scholar 

  60. Houde D, Berkowitz SA, Engen JR (2011) The utility of hydrogen/deuterium exchange mass spectrometry in biopharmaceutical comparability studies. J Pharm Sci 100:2071–2086. https://doi.org/10.1002/jps.22432

    Article  CAS  PubMed  Google Scholar 

  61. Lau AMC, Ahdash Z, Martens C, Politis A (2019) Deuteros: software for rapid analysis and visualization of data from differential hydrogen deuterium exchange-mass spectrometry. Bioinformatics 35:3171–3173. https://doi.org/10.1093/bioinformatics/btz022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Perez-Riverol Y, Csordas A, Bai J et al (2019) The PRIDE database and related tools and resources in 2019: improving support for quantification data. Nucleic Acids Res 47:D442–D450. https://doi.org/10.1093/nar/gky1106

    Article  CAS  PubMed  Google Scholar 

  63. Deutsch EW, Csordas A, Sun Z et al (2017) The ProteomeXchange consortium in 2017: supporting the cultural change in proteomics public data deposition. Nucleic Acids Res 45:D1100–D1106. https://doi.org/10.1093/nar/gkw936

    Article  CAS  PubMed  Google Scholar 

  64. Glasoe PK, Long FA (1960) Use of glass electrodes to measure acidities in deuterium oxide. J Phys Chem 64:188–190. https://doi.org/10.1021/j100830a521

    Article  CAS  Google Scholar 

  65. Rey M, Man P, Brandolin G et al (2009) Recombinant immobilized rhizopuspepsin as a new tool for protein digestion in hydrogen/deuterium exchange mass spectrometry: immobilized rhizopuspepsin for protein digestion. Rapid Commun Mass Spectrom 23:3431–3438. https://doi.org/10.1002/rcm.4260

    Article  CAS  PubMed  Google Scholar 

  66. Yang M, Hoeppner M, Rey M et al (2015) Recombinant nepenthesin II for hydrogen/deuterium exchange mass spectrometry. Anal Chem 87:6681–6687. https://doi.org/10.1021/acs.analchem.5b00831

    Article  CAS  PubMed  Google Scholar 

  67. Wales TE, Fadgen KE, Gerhardt GC, Engen JR (2008) High-speed and high-resolution UPLC separation at zero degrees celsius. Anal Chem 80:6815–6820. https://doi.org/10.1021/ac8008862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Giladi M, van Dijk L, Refaeli B et al (2017) Dynamic distinctions in the Na+/Ca2+ exchanger adopting the inward- and outward-facing conformational states. J Biol Chem 292:12311–12323. https://doi.org/10.1074/jbc.M117.787168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Trcka F, Durech M, Vankova P et al (2020) The interaction of the mitochondrial protein importer TOMM34 with HSP70 is regulated by TOMM34 phosphorylation and binding to 14-3-3 adaptors. J Biol Chem 295:8928–8944. https://doi.org/10.1074/jbc.RA120.012624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Kochert BA, Iacob RE, Wales TE et al (2018) Hydrogen-deuterium exchange mass spectrometry to study protein complexes. In: Marsh JA (ed) Protein complex assembly. Springer, New York, pp 153–171

    Chapter  Google Scholar 

  71. Moroco JA, Engen JR (2015) Replication in bioanalytical studies with HDX MS: aim as high as possible. Bioanalysis 7:1065–1067. https://doi.org/10.4155/bio.15.46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Majumdar R, Manikwar P, Hickey JM et al (2012) Minimizing carry-over in an online pepsin digestion system used for the H/D exchange mass spectrometric analysis of an IgG1 monoclonal antibody. J Am Soc Mass Spectrom 23:2140–2148. https://doi.org/10.1007/s13361-012-0485-9

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grant 158120 from the Grant Agency of Charles University to J.V. Support from the EU and the Czech Ministry of Education, Youth, and Sport via the BioCeV (CZ.1.05/1.1.00/02.0109) and CIISB (LM2018127) projects is also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Petr Man or Markéta Martínková .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Vávra, J. et al. (2023). Hydrogen/Deuterium Exchange Mass Spectrometry of Heme-Based Oxygen Sensor Proteins. In: Weinert, E.E. (eds) Oxygen Sensing. Methods in Molecular Biology, vol 2648. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3080-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3080-8_8

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3079-2

  • Online ISBN: 978-1-0716-3080-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics