Skip to main content

Determining Potency of Inhibitors Targeting Histone Deacetylase 6 by Quantification of Acetylated Tubulin in Cells

  • Protocol
  • First Online:
HDAC/HAT Function Assessment and Inhibitor Development

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2589))

Abstract

During the preclinical development of small molecule inhibitors, compounds or compound libraries are typically first screened using purified target enzymes in vitro to select candidates with high potency. In the later stages of the development, however, functional cell-based assays may provide biologically more relevant data. In this chapter, we describe a detailed protocol for determining the potency of inhibitors targeting human histone deacetylase 6 in complex cellular environments. Cells are first treated with a dilution series of tested compounds, cell lysates separated by SDS-PAGE, and electrotransferred to a blotting membrane. The inhibitor potency is then determined indirectly by quantifying the levels of acetylated tubulin as a surrogate readout.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. de Ruijter AJ, van Gennip AH, Caron HN, Kemp S, van Kuilenburg AB (2003) Histone deacetylases (HDACs): characterization of the classical HDAC family. Biochem J 370:737–749

    Article  Google Scholar 

  2. Cappellacci L, Perinelli DR, Maggi F, Grifantini M, Petrelli R (2020) Recent Progress in histone deacetylase inhibitors as anticancer agents. Curr Med Chem 27:2449–2493

    Article  CAS  Google Scholar 

  3. Eckschlager T, Plch J, Stiborova M, Hrabeta J (2017) Histone deacetylase inhibitors as anticancer drugs. Int J Mol Sci 18:1414

    Article  Google Scholar 

  4. Suraweera A, O’Byrne KJ, Richard DJ (2018) Combination therapy with histone deacetylase inhibitors (HDACi) for the treatment of cancer: achieving the full therapeutic potential of HDACi. Front Oncol 8:92

    Article  Google Scholar 

  5. Melesina J, Simoben CV, Praetorius L, Bulbul EF, Robaa D, Sippl W (2021) Strategies to design selective histone deacetylase inhibitors. ChemMedChem 16:1336–1359

    Article  CAS  Google Scholar 

  6. Benoy V, Van Helleputte L, Prior R, d’Ydewalle C, Haeck W, Geens N et al (2018) HDAC6 is a therapeutic target in mutant GARS-induced Charcot-Marie-tooth disease. Brain 141:673–687

    Article  Google Scholar 

  7. Kozikowski AP, Shen S, Pardo M, Tavares MT, Szarics D, Benoy V et al (2019) Brain penetrable histone deacetylase 6 inhibitor SW-100 ameliorates memory and learning impairments in a mouse model of fragile X syndrome. ACS Chem Neurosci 10:1679–1695

    Article  CAS  Google Scholar 

  8. Noonepalle S, Shen S, Ptacek J, Tavares MT, Zhang G, Stransky J et al (2020) Rational Design of Suprastat: a novel selective histone deacetylase 6 inhibitor with the ability to potentiate immunotherapy in melanoma models. J Med Chem 63:10246–10262

    Article  CAS  Google Scholar 

  9. Ressing N, Sonnichsen M, Osko JD, Scholer A, Schliehe-Diecks J, Skerhut A et al (2020) Multicomponent synthesis, binding mode, and structure-activity relationship of selective histone deacetylase 6 (HDAC6) inhibitors with bifurcated capping groups. J Med Chem 63:10339–10351

    Article  CAS  Google Scholar 

  10. Shen S, Picci C, Ustinova K, Benoy V, Kutil Z, Zhang G et al (2021) Tetrahydroquinoline-capped histone deacetylase 6 inhibitor SW-101 ameliorates pathological phenotypes in a Charcot-Marie-tooth type 2A mouse model. J Med Chem 64:4810–4840

    Article  CAS  Google Scholar 

  11. Stocks M (2013) The small molecule drug discovery process – from target selection to candidate selection. In: Introduction to biological and small molecule drug research and development: theory and case studies. Elsevier, pp 81–126

    Chapter  Google Scholar 

  12. Robers MB, Dart ML, Woodroofe CC, Zimprich CA, Kirkland TA, Machleidt T et al (2015) Target engagement and drug residence time can be observed in living cells with BRET. Nat Commun 6:10091

    Article  CAS  Google Scholar 

  13. Hubbert C, Guardiola A, Shao R, Kawaguchi Y, Ito A, Nixon A et al (2002) HDAC6 is a microtubule-associated deacetylase. Nature 417:455–458

    Article  CAS  Google Scholar 

  14. Kovacs JJ, Murphy PJ, Gaillard S, Zhao X, Wu JT, Nicchitta CV et al (2005) HDAC6 regulates Hsp90 acetylation and chaperone-dependent activation of glucocorticoid receptor. Mol Cell 18:601–607

    Article  CAS  Google Scholar 

  15. Zhang X, Yuan Z, Zhang Y, Yong S, Salas-Burgos A, Koomen J et al (2007) HDAC6 modulates cell motility by altering the acetylation level of cortactin. Mol Cell 27:197–213

    Article  CAS  Google Scholar 

  16. Piperno G, LeDizet M, Chang XJ (1987) Microtubules containing acetylated alpha-tubulin in mammalian cells in culture. J Cell Biol 104:289–302

    Article  CAS  Google Scholar 

  17. Matsuyama A, Shimazu T, Sumida Y, Saito A, Yoshimatsu Y, Seigneurin-Berny D et al (2002) In vivo destabilization of dynamic microtubules by HDAC6-mediated deacetylation. EMBO J 21:6820–6831

    Article  CAS  Google Scholar 

  18. Santo L, Hideshima T, Kung AL, Tseng JC, Tamang D, Yang M et al (2012) Preclinical activity, pharmacodynamic, and pharmacokinetic properties of a selective HDAC6 inhibitor, ACY-1215, in combination with bortezomib in multiple myeloma. Blood 119:2579–2589

    Article  CAS  Google Scholar 

  19. Ustinova K, Novakova Z, Saito M, Meleshin M, Mikesova J, Kutil Z et al (2020) The disordered N-terminus of HDAC6 is a microtubule-binding domain critical for efficient tubulin deacetylation. J Biol Chem 295:2614–2628

    Article  CAS  Google Scholar 

  20. Yang X, Naughton SX, Han Z, He M, Zheng YG, Terry AV Jr et al (2018) Mass spectrometric quantitation of tubulin acetylation from pepsin-digested rat brain tissue using a novel stable-isotope standard and capture by anti-peptide antibody (SISCAPA) method. Anal Chem 90:2155–2163

    Article  CAS  Google Scholar 

  21. Skultetyova L, Ustinova K, Kutil Z, Novakova Z, Pavlicek J, Mikesova J et al (2017) Human histone deacetylase 6 shows strong preference for tubulin dimers over assembled microtubules. Sci Rep 7:11547

    Article  Google Scholar 

  22. Geuens G, Gundersen GG, Nuydens R, Cornelissen F, Bulinski JC, DeBrabander M (1986) Ultrastructural colocalization of tyrosinated and detyrosinated alpha-tubulin in interphase and mitotic cells. J Cell Biol 103:1883–1893

    Article  CAS  Google Scholar 

  23. Janes KA (2015) An analysis of critical factors for quantitative immunoblotting. Sci Signal 8:rs2

    Article  Google Scholar 

  24. McDonough AA, Veiras LC, Minas JN, Ralph DL (2015) Considerations when quantitating protein abundance by immunoblot. Am J Physiol Cell Physiol 308:C426–C433

    Article  CAS  Google Scholar 

  25. Pillai-Kastoori L, Schutz-Geschwender AR, Harford JA (2020) A systematic approach to quantitative Western blot analysis. Anal Biochem 593:113608

    Article  CAS  Google Scholar 

  26. Bergman JA, Woan K, Perez-Villarroel P, Villagra A, Sotomayor EM, Kozikowski AP (2012) Selective histone deacetylase 6 inhibitors bearing substituted urea linkers inhibit melanoma cell growth. J Med Chem 55:9891–9899

    Article  CAS  Google Scholar 

  27. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by the CAS (RVO: 86652036), the Czech Science Foundation (21-31806), and 5R01CA249248-02 from the NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cyril Barinka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Mikesova, J., Ondrakova, M., Jelinkova, I., Ptacek, J., Novakova, Z., Barinka, C. (2023). Determining Potency of Inhibitors Targeting Histone Deacetylase 6 by Quantification of Acetylated Tubulin in Cells. In: Krämer, O.H. (eds) HDAC/HAT Function Assessment and Inhibitor Development. Methods in Molecular Biology, vol 2589. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2788-4_29

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2788-4_29

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2787-7

  • Online ISBN: 978-1-0716-2788-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics