Skip to main content

Structural Analysis of Strigolactone-Related Gene Products

  • Protocol
  • First Online:
Strigolactones

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2309))

  • 876 Accesses

Abstract

Structural knowledge of biological macromolecules is essential for understanding their function and for modifying that function by engineering. Protein crystallography is a powerful method for elucidating molecular structures of proteins, but it is essential that the investigator has a basic knowledge of good practices and of the major pitfalls in the technique. Here we describe issues specific for the case of structural studies of strigolactone (SL) receptor structure and function, and in particular the difficulties associated with capturing complexes of SL receptors with the SL hormone ligand in the crystal.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Umehara M, Hanada A, Yoshida S, Akiyama K, Arite T, Takeda-Kamiya N et al (2008) Inhibition of shoot branching by new terpenoid plant hormones. Nature 455:195–200

    Article  CAS  PubMed  Google Scholar 

  2. Gomez-Roídan Pagès V, Fermas S, Brewer PB, Puech-Pages V, Dun EA, Pillot J-P et al (2008) Strigolactone inhibition of shoot branching. Nature 455:189–194

    Google Scholar 

  3. Waters MT, Gutjahr C, Bennett T, Nelson DC (2017) Strigolactone signaling and evolution. Annu Rev Plant Biol 68:291–322

    Article  CAS  PubMed  Google Scholar 

  4. Bennett T, Leyser O (2014) Strigolactone signalling: standing on the shoulders of DWARFs. Curr Opin Plant Biol 22:7–13

    Article  CAS  PubMed  Google Scholar 

  5. Bythell-Douglas R, Waters MT, Scaffidi A, Flematti GR, Smith SM, Bond CS (2013) The structure of the karrikin-insensitive protein (KAI2) in Arabidopsis thaliana. PLoS One 8:e54758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. de Saint Germain A, Clavé G, Badet-Denisot M-A, Pillot J-P, Cornu D, Le Caer J-P et al (2016) An histidine covalent receptor and butenolide complex mediates strigolactone perception. Nat Chem Biol 12:787–794

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. de Saint Germain A, Bonhomme S, Boyer F-D, Rameau C (2013) Novel insights into strigolactone distribution and signalling. Curr Opin Plant Biol 16:583–589

    Article  PubMed  CAS  Google Scholar 

  8. Adams PD, Aertgeerts K, Bauer C, Bell JA, Berman HM, Bhat TN et al (2016) Outcome of the first wwPDB/CCDC/D3R ligand validation workshop. Structure 24:502–508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Pozharski E, Weichenberger CX, Rupp B (2013) Techniques, tools and best practices for ligand electron-density analysis and results from their application to deposited crystal structures. Acta Crystallogr Sect D: Biol Crystallogr 69:150–167

    Article  CAS  Google Scholar 

  10. Weichenberger CX, Pozharski E, Rupp B (2013) Visualizing ligand molecules in Twilight electron density. Acta Crystallogr Sect F Struct Biol Cryst Commun 69:195–200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Smart OS, Horský V, Gore S, Svobodová Vareková R, Bendová V, Kleywegt GJ, Velankar S (2017) Validation of ligands in macromolecular structures determined by X-ray crystallography. Acta Crystallogr Sect D: Biol Crystallogr 74:226–236

    Google Scholar 

  12. Wlodawer A, Minor W, Dauter Z, Jaskolski M (2008) Protein crystallography for non-crystallographers, or how to get the best (but not more) from published macromolecular structures. FEBS J 275:1–21

    Article  CAS  PubMed  Google Scholar 

  13. Blundell TL, Johnson LN (1976) Protein crystallography. Academic Press, New York

    Google Scholar 

  14. Stout GH, Jensen LH (1989) X-ray structure determination. A practical guide. Wiley, New York

    Google Scholar 

  15. Drenth J (1999) Principles of protein X-ray crystallography. Springer, New York

    Book  Google Scholar 

  16. Kabsch W (2010a) XDS. Acta Crystallogr Sect D: Biol Crystallogr 66:125–132

    Article  CAS  Google Scholar 

  17. Kabsch W (2010b) Integration, scaling, space group assignment and post-refinement. Acta Crystallogr Sect D: Biol Crystallogr 66:133–144

    Article  CAS  Google Scholar 

  18. Evans PR (2011) An introduction to data reduction: space-group determination, scaling and intensity statistics. Acta Crystallogr Sect D: Biol Crystallogr 67:282–292

    Article  CAS  Google Scholar 

  19. Evans PR, Murshudov GN (2013) How good are my data and what is the resolution? Acta Crystallogr Sect D: Biol Crystallogr 69:1204–1214

    Article  CAS  Google Scholar 

  20. Karplus PA, Diederichs K (2012) Linking crystallographic model and data quality. Science 336:1030–1033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Weiss MS (2001) Global indicators of X-ray data quality. J Appl Crystallogr 34:130–135

    Article  CAS  Google Scholar 

  22. Brändén C-I, Jones TA (1990) Between objectivity and subjectivity. Nature 343:687–689

    Article  Google Scholar 

  23. Kleywegt GJ, Jones TA (1995) Where freedom is given, liberties are taken. Structure 3:535–540

    Article  CAS  PubMed  Google Scholar 

  24. Murshudov GN, Skubák P, Lebedev AA, Pannu NS, Steiner RA, Nicholls RA, Winn MD, Long F, Vagin AA (2011) REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallogr Sect D: Biol Crystallogr 67:355–367

    Article  CAS  Google Scholar 

  25. Bricogne G, Blanc E, Brandl M, Flensburg C, Keller P, Paciorek W et al (2017) BUSTER. Global Phasing Ltd, Cambridge

    Google Scholar 

  26. Liebschner D, Afonine PV, Baker ML, Bunkóczi G, Chen VB, Croll TI et al (2019) Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix. Acta Crystallogr Sect D: Biol Crystallogr 75:861–877

    Article  CAS  Google Scholar 

  27. Brünger AT (1992) Free R value: a novel statistical quantity for assessing the accuracy of crystal structures. Nature 355:472–475

    Article  PubMed  Google Scholar 

  28. Diederichs K, Karplus PA (1997) Improved R-factors for diffraction data analysis in macromolecular crystallography. Nat Struct Biol 4:269–275

    Article  CAS  PubMed  Google Scholar 

  29. Engh R, Huber R (1991) Accurate bond and angle parameters for X-ray protein-structure refinement. Acta Crystallogr Sect D: Biol Crystallogr 47:392–400

    Article  Google Scholar 

  30. Ramakrishnan C, Ramachandran GN (1995) Stereo-chemical criteria for polypeptide and protein chain conformations. II. Allowed conformation for a pair of peptide units. Biophys J 5:909–933

    Article  Google Scholar 

  31. Matthews BW (1968) Solvent content of protein crystals. J Mol Biol 33:491–497

    Article  CAS  PubMed  Google Scholar 

  32. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The Protein Data Bank. Nucleic Acids Res 28:235–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Harding MM (2006) Small revisions to predicted distances around metal sites in proteins. Acta Crystallogr Sect D: Biol Crystallogr 62:678–682

    Article  CAS  Google Scholar 

  34. Zheng H, Chordia MD, Cooper DR, Chruszcz M, Müller P, Sheldrick GM, Minor W (2014) Validating metal binding sites in macromolecule structures using the CheckMyMetal web server. Nat Protoc 9:156–170

    Article  CAS  PubMed  Google Scholar 

  35. Hamiaux C, Drummond RS, Janssen BJ, Ledger SE, Cooney JM, Newcomb RD, Snowden KC (2012) DAD2 is an α/β hydrolase likely to be involved in the perception of the plant branching hormone, strigolactone. Curr Biol 22:2032–2036

    Article  CAS  PubMed  Google Scholar 

  36. Kagiyama M, Hirano Y, Mori T, Kim SY, Kyozuka J, Seto Y, Yamaguchi S, Hakoshima T (2013) Structures of D14 and D14L in the strigolactone and karrikin signaling pathways. Genes Cells 18:147–160

    Article  CAS  PubMed  Google Scholar 

  37. Zhao LH, Zhou XE, Wu ZS, Yi W, Xu Y, Li S et al (2013) Crystal structures of two phytohormone signal- transducing α/β hydrolases: karrikin-signaling KAI2 and strigolactone-signaling DWARF14. Cell Res 23:436–439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Stogios PJ, Onopriyenko O, Yim V, Savchenko A (2015) Crystal structure of the strigolactone receptor ShHTL5 from Striga hermonthica. Science 350:203–207

    PubMed  CAS  Google Scholar 

  39. Carlsson GH, Hasse D, Cardinale F, Prandi C, Andersson I (2018) The elusive ligand complexes of the DWARF14 strigolactone receptor. J Exp Bot 69:2345–2354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hamiaux C, Larsen L, Lee HW, Luo Z, Sharma P, Hawkins BC, Perry NB, Snowden KC (2019) Chemical synthesis and characterization of a new quinazolinedione competitive antagonist for strigolactone receptors with an unexpected binding mode. Biochem J 476:1843–1856

    Article  CAS  PubMed  Google Scholar 

  41. Rupp B (2010) Scientific inquiry, inference and critical reasoning in the macromolecular crystallography curriculum. J Appl Crystallogr 43:1242–1249

    Article  CAS  Google Scholar 

  42. Prandi C, Occhiato EG, Tabasso S, Bonfante P, Novero M, Scarpi D, Bova ME, Miletto I (2011) New potent fluorescent analogues of strigolactones: synthesis and biological activity in parasitic weed germination and fungal branching. Eur J Org Chem 2011:3781–3793

    Article  CAS  Google Scholar 

  43. Zhao LH, Zhou XE, Yi W, Wu Z, Liu Y, Kang Y et al (2015) Destabilization of strigolactone receptor DWARF14 by binding of ligand and E3-ligase signaling effector DWARF3. Cell Res 25:1219–1236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Yao R, Ming Z, Yan L, Li S, Wang F, Ma S et al (2016) DWARF14 is a non-canonical hormone receptor for strigolactone. Nature 536:469–473

    Article  CAS  PubMed  Google Scholar 

  45. Zwanenburg B, Mwakaboko AS, Kannan C (2016) Suicidal germination for parasitic weed control. Pest Manag Sci 72:2016–2025

    Article  CAS  PubMed  Google Scholar 

  46. Waters MT (2019) Spoilt for choice: new options for inhibitors of strigolactone signaling. Mol Plant 12:21–23

    Article  CAS  PubMed  Google Scholar 

  47. Hamiaux C, Drummond RS, Luo Z, Lee HW, Sharma P, Janssen BJ, Perry NB, Denny WA, Snowden KC (2018) Inhibition of strigolactone receptors by N-phenylanthranilic acid derivatives: structural and functional insights. J Biol Chem 293:6530–6543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Hameed US, Haider I, Jamil M, Kountche BA, Guo X, Zarban RA, Kim D, Al-Babili S, Arold ST (2018) Structural basis for specific inhibition of the highly sensitive ShHTL7 receptor. EMBO Rep 19:e45619

    Google Scholar 

  49. Takeuchi J, Jiang K, Hirabayashi K, Imamura Y, Wu Y, Xu Y et al (2019) Rationally designed strigolactone analogs as antagonists of the D14 receptor. Plant Cell Physiol 59:1545–1554

    Article  CAS  Google Scholar 

  50. Nakamura H, Hirabayashi K, Miyakawa T, Kikuzato K, Hu W, Xu Y et al (2019) Triazole ureas covalently bind to strigolactone receptor and antagonize strigolactone responses. Mol Plant 12:44–58

    Article  CAS  PubMed  Google Scholar 

  51. Xu Y, Miyakawa T, Nosaki S, Nakamura A, Lyu Y, Nakamura H et al (2018) Structural analysis of HTL and D14 proteins reveals the basis for ligand selectivity in Striga. Nat Commun 9:3947–3947

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a COST grant from the European Union (STREAM Action no. FA1206). Part of this work was also supported by the project “Structural dynamics of biomolecular systems (ELIBIO)” (NO. CZ.02.1.01/0.0/0.0/15_003/0000447) from the European Regional Development Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Inger Andersson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Andersson, I., Carlsson, G.H., Hasse, D. (2021). Structural Analysis of Strigolactone-Related Gene Products. In: Prandi, C., Cardinale, F. (eds) Strigolactones. Methods in Molecular Biology, vol 2309. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1429-7_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1429-7_19

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1428-0

  • Online ISBN: 978-1-0716-1429-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics