Skip to main content

Proteomic Analysis of Human Neural Stem Cell Differentiation by SWATH-MS

  • Protocol
  • First Online:
Embryonic Stem Cell Protocols

Abstract

The unique properties of stem cells to self-renew and differentiate hold great promise in disease modelling and regenerative medicine. However, more information about basic stem cell biology and thorough characterization of available stem cell lines is needed. This is especially essential to ensure safety before any possible clinical use of stem cells or partially committed cell lines. As proteins are the key effector molecules in the cell, the proteomic characterization of cell lines, cell compartments or cell secretome and microenvironment is highly beneficial to answer above mentioned questions. Nowadays, method of choice for large-scale discovery-based proteomic analysis is mass spectrometry (MS) with data-independent acquisition (DIA). DIA is a robust, highly reproducible, high-throughput quantitative MS approach that enables relative quantification of thousands of proteins in one sample. In the current protocol, we describe a specific variant of DIA known as SWATH-MS for characterization of neural stem cell differentiation. The protocol covers the whole process from cell culture, sample preparation for MS analysis, the SWATH-MS data acquisition on TTOF 5600, the complete SWATH-MS data processing and quality control using Skyline software and the basic statistical analysis in R and MSstats package. The protocol for SWATH-MS data acquisition and analysis can be easily adapted to other samples amenable to MS-based proteomics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Thomson JA, Itskovitz-Eldor J, Shapiro SS et al (1998) Embryonic stem cell lines derived from human blastocysts. Science 282:1145–1147

    Article  CAS  PubMed  Google Scholar 

  2. Barker RA, de Beaufort I (2013) Scientific and ethical issues related to stem cell research and interventions in neurodegenerative disorders of the brain. Prog Neurobiol 110:63–73

    Article  PubMed  Google Scholar 

  3. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676

    Article  CAS  PubMed  Google Scholar 

  4. Goldman SA (2016) Stem and progenitor cell-based therapy of the central nervous system: hopes, hype, and wishful thinking. Cell Stem Cell 18:174–188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Zizkova M, Sucha R, Tyleckova J et al (2015) Proteome-wide analysis of neural stem cell differentiation to facilitate transition to cell replacement therapies. Expert Rev Proteomics 12:83–95

    Article  CAS  PubMed  Google Scholar 

  6. Boese AC, Hamblin MH, Lee J-P (2020) Neural stem cell therapy for neurovascular injury in Alzheimer’s disease. Exp Neurol 324:113112

    Article  CAS  PubMed  Google Scholar 

  7. Choi K-A, Hong S (2017) Induced neural stem cells as a means of treatment in Huntington’s disease. Expert Opin Biol Ther 17:1333–1343

    CAS  PubMed  Google Scholar 

  8. Fan Y, Winanto, Ng S-Y (2020) Replacing what’s lost: a new era of stem cell therapy for Parkinson’s disease. Transl Neurodegener 9:2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Aebersold R, Mann M (2003) Mass spectrometry-based proteomics. Nature 422:198–207

    Article  CAS  PubMed  Google Scholar 

  10. Sucha R, Kubickova M, Cervenka J et al (2021) Targeted mass spectrometry for monitoring of neural differentiation. Biol Open 10:bio058727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gillet LC, Navarro P, Tate S et al (2012) Targeted data extraction of the MS/MS spectra generated by data independent acquisition: a new concept for consistent and accurate proteome analysis. Mol Cell Proteomics 11(6):O111.016717

    Article  PubMed  PubMed Central  Google Scholar 

  12. Ludwig C, Gillet L, Rosenberger G et al (2018) Data-independent acquisition-based SWATH-MS for quantitative proteomics: a tutorial. Mol Syst Biol 14:e8126

    Article  PubMed  PubMed Central  Google Scholar 

  13. Tsou C-C, Avtonomov D, Larsen B et al (2015) DIA-umpire: comprehensive computational framework for data-independent acquisition proteomics. Nat Methods 12:258–264, 7 p following 264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Meyer JG, Schilling B (2017) Clinical applications of quantitative proteomics using targeted and untargeted data-independent acquisition techniques. Expert Rev Proteomics 14:419–429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. MacLean B, Tomazela DM, Shulman N et al (2010) Skyline: an open source document editor for creating and analyzing targeted proteomics experiments. Bioinformatics 26:966–968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Choi M, Chang C-Y, Clough T et al (2014) MSstats: an R package for statistical analysis of quantitative mass spectrometry-based proteomic experiments. Bioinformatics 30:2524–2526

    Article  CAS  PubMed  Google Scholar 

  17. Červenka J, Tylečková J, Kupcová Skalníková H et al (2021) Proteomic characterization of human neural stem cells and their secretome during in vitro differentiation. Front Cell Neurosci 14:612560

    Article  PubMed  PubMed Central  Google Scholar 

  18. R Core Team (2021) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  19. Wiśniewski JR (2016) Quantitative evaluation of filter aided sample preparation (FASP) and multienzyme digestion FASP protocols. Anal Chem 88:5438–5443

    Article  PubMed  Google Scholar 

  20. Röst HL, Rosenberger G, Navarro P et al (2014) OpenSWATH enables automated, targeted analysis of data-independent acquisition MS data. Nat Biotechnol 32:219–223

    Article  PubMed  Google Scholar 

  21. Röst HL, Aebersold R, Schubert OT (2017) Automated SWATH data analysis using targeted extraction of ion chromatograms. In: Comai L, Katz JE, Mallick P (eds) Proteomics. Springer, New York, pp 289–307

    Chapter  Google Scholar 

  22. Holewinski RJ, Parker SJ, Matlock AD et al (2016) Methods for SWATH™: data independent acquisition on TripleTOF mass spectrometers. Methods Mol Biol 1410:265–279

    Article  CAS  PubMed  Google Scholar 

  23. Li Y, Zhong C-Q, Xu X et al (2015) Group-DIA: analyzing multiple data-independent acquisition mass spectrometry data files. Nat Methods 12:1105–1106

    Article  CAS  PubMed  Google Scholar 

  24. Sinitcyn P, Hamzeiy H, Salinas Soto F et al (2021) MaxDIA enables library-based and library-free data-independent acquisition proteomics. Nat Biotechnol 39:1–11

    Article  Google Scholar 

  25. Egertson JD, MacLean B, Johnson R et al (2015) Multiplexed peptide analysis using data independent acquisition and skyline. Nat Protoc 10:887–903

    Article  PubMed  PubMed Central  Google Scholar 

  26. Kelstrup CD, Bekker-Jensen DB, Arrey TN et al (2018) Performance evaluation of the Q exactive HF-X for shotgun proteomics. J Proteome Res 17:727–738

    Article  CAS  PubMed  Google Scholar 

  27. Koopmans F, Ho JTC, Smit AB et al (2018) Comparative analyses of data independent acquisition mass spectrometric approaches: DIA, WiSIM-DIA, and untargeted DIA. Proteomics 18:1700304

    Article  PubMed  PubMed Central  Google Scholar 

  28. Ritchie ME, Phipson B, Wu D et al (2015) limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res 43:e47

    Article  PubMed  PubMed Central  Google Scholar 

  29. Smyth G, Hu Y, Ritchie M et al (2020) limma: linear models for microarray data, bioconductor version: release (3.10)

    Google Scholar 

  30. Bates D, Mächler M, Bolker B et al (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67:1–48

    Article  Google Scholar 

  31. Bates D, Maechler M, Bolker B et al (2018) lme4: linear mixed-effects models using “Eigen” and S4

    Google Scholar 

  32. RStudio Team (2021) RStudio: Integrated Development Environment for R. RStudio, Inc., Boston, MA

    Google Scholar 

  33. Chiva C, Olivella R, Borràs E et al (2018) QCloud: a cloud-based quality control system for mass spectrometry-based proteomics laboratories. PLoS One 13:e0189209

    Article  PubMed  PubMed Central  Google Scholar 

  34. Rosenberger G, Koh CC, Guo T et al (2014) A repository of assays to quantify 10,000 human proteins by SWATH-MS. Sci Data 1:140031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Reiter L, Rinner O, Picotti P et al (2011) mProphet: automated data processing and statistical validation for large-scale SRM experiments. Nat Methods 8:430–435

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Czech Ministry of Education, Youth and Sports project InterCOST (LTC18079) under CellFit COST Action (CA16119), the Charles University, projects GA UK No. 1767518 and No. 1460217, and the Czech Science Foundation (19-01747S).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petr Vodicka .

Editor information

Editors and Affiliations

1 Electronic Supplementary Material

Data 1

MSstats_Input_Example (CSV 69246 kb)

Data 2

MSstats_script_example (R 8 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Tyleckova, J. et al. (2022). Proteomic Analysis of Human Neural Stem Cell Differentiation by SWATH-MS. In: Turksen, K. (eds) Embryonic Stem Cell Protocols . Methods in Molecular Biology, vol 2520. Humana, New York, NY. https://doi.org/10.1007/7651_2022_462

Download citation

  • DOI: https://doi.org/10.1007/7651_2022_462

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2436-4

  • Online ISBN: 978-1-0716-2437-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics