Skip to main content

Retinal Vessel Segmentation by U-Net with VGG-16 Backbone on Patched Images with Smooth Blending

  • Conference paper
  • First Online:
Advances in Intelligent Networking and Collaborative Systems (INCoS 2023)

Abstract

Detecting vessels in retinal images is crucial for various medical applications, including diagnosing and monitoring eye diseases such as diabetic retinopathy, glaucoma, and macular degeneration. This paper presents a study on applying the U-Net architecture with a VGG-16 backbone for retinal vessel segmentation trained on patched images. As a source of training images, three well-labeled datasets, DRIVE, STARE, and CHASE DB1, were used for the training of the segmentation algorithm. We implemented the task-specific data class to further divide training images into patches, and the data augmentation techniques to increase the size of training set and to promote the model’s generalization ability. Additionally, a blending technique was employed to achieve smooth predictions by blending image patches. The experimental results highlight the effectiveness of the proposed approach in accurately detecting blood vessels in retinal images, providing promising prospects for improving ophthalmic diagnosis and treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/MartinHasal.

References

  1. Abràmoff, M.D., et al.: Improved automated detection of diabetic retinopathy on a publicly available dataset through integration of deep learning. Invest. Ophthalmol. Vis. Sci. 57(13), 5200–5206 (2016)

    Article  Google Scholar 

  2. Badar, M., Haris, M., Fatima, A.: Application of deep learning for retinal image analysis: a review. Comput. Sci. Rev. 35, 100203 (2020)

    Article  MathSciNet  Google Scholar 

  3. Li, H., Hsu, W., Lee, M.L., Wong, T.Y.: Automatic grading of retinal vessel caliber. IEEE Trans. Biomed. Eng. 52(7), 1352–1355 (2005)

    Article  Google Scholar 

  4. Abdulsahib, A.A., Mahmoud, M.A., Mohammed, M.A., Rasheed, H.H., Mostafa, S.A., Maashi, M.S.: Comprehensive review of retinal blood vessel segmentation and classification techniques: intelligent solutions for green computing in medical images, current challenges, open issues, and knowledge gaps in fundus medical images. Netw. Model. Anal. Health Inf. Bioinf. 10, 1–32 (2021)

    Google Scholar 

  5. Kubicek, J., Timkovic, J., Penhaker, M., Augustynek, M., Bryjova, I., Kasik, V.: Extraction of optical disc geometrical parameters with using of active snake model with gradient directional information. In: Nguyen, N.T., Tojo, S., Nguyen, L.M., Trawiński, B. (eds.) ACIIDS 2017. LNCS (LNAI), vol. 10192, pp. 445–454. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-54430-4_43

    Chapter  Google Scholar 

  6. Soomro, T.A., et al.: Deep learning models for retinal blood vessels segmentation: a review. IEEE Access 7, 71696–71717 (2019)

    Article  Google Scholar 

  7. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  8. Wang, C., Zhao, Z., Ren, Q., Yongtao, X., Yi, Yu.: Dense u-net based on patch-based learning for retinal vessel segmentation. Entropy 21(2), 168 (2019)

    Article  MathSciNet  Google Scholar 

  9. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  10. Siddique, N., Paheding, S., Elkin, C.P., Devabhaktuni, V.: U-net and its variants for medical image segmentation: a review of theory and applications. IEEE Access 9, 82031–82057 (2021)

    Article  Google Scholar 

  11. Staal, J., Abràmoff, M.D., Niemeijer, M., Viergever, M.A., Van Ginneken, B.: Ridge-based vessel segmentation in color images of the retina. IEEE Trans. Med. Imaging 23(4), 501–509 (2004)

    Article  Google Scholar 

  12. Hoover, A.D., Kouznetsova, V., Goldbaum, M.: Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response. IEEE Trans. Med. Imaging 19(3), 203–210 (2000)

    Article  Google Scholar 

  13. Owen, C.G., et al.: Measuring retinal vessel tortuosity in 10-year-old children: validation of the computer-assisted image analysis of the retina (CAIAR) program. Invest. Ophthalmol. Vis. Sci. 50(5), 2004–2010 (2009)

    Article  Google Scholar 

  14. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2980–2988 (2017)

    Google Scholar 

  15. Hasal, M., Nowaková, J., Hernández-Sosa, D., Timkovič, J.: Image enhancement in retinopathy of prematurity. In: Barolli, L., Miwa, H. (eds.) INCoS 2022. Lecture Notes in Networks and Systems, vol. 527, pp. 422–431. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-14627-5_43

    Chapter  Google Scholar 

  16. Kukil: Intersection over union (IoU) in object detection & segmentation. Web-Site (2022)

    Google Scholar 

  17. Lemaître, G., Nogueira, F., Aridas, C.K.: Imbalanced-learn: a Python toolbox to tackle the curse of imbalanced datasets in machine learning. J. Mach. Learn. Res. 18(17), 1–5 (2017)

    Google Scholar 

  18. Liskowski, P., Krawiec, K.: Segmenting retinal blood vessels with deep neural networks. IEEE Trans. Med. Imaging 35(11), 2369–2380 (2016)

    Article  Google Scholar 

  19. Mo, J., Zhang, L.: Multi-level deep supervised networks for retinal vessel segmentation. Int. J. Comput. Assist. Radiol. Surg. 12, 2181–2193 (2017)

    Article  Google Scholar 

  20. Vooban AI: Satellite image segmentation: a workflow with u-net. Web-Site (2017)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the European Regional Development Fund under the project AI &Reasoning (reg. no. CZ.02.1.01/0.0/0.0/15_003/0000466), and by the project of the Student Grant System, VSB – Technical University of Ostrava, Czech Republic, under the grant No. SP2023/12” Parallel processing of Big Data IX and by the project Constrained multi-objective Optimization Based on Problem Landscape Analysis funded by the Czech Science Foundation (grant no. GF22-34873K).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Hasal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hasal, M., Pecha, M., Nowaková, J., Hernández-Sosa, D., Snášel, V., Timkovič, J. (2023). Retinal Vessel Segmentation by U-Net with VGG-16 Backbone on Patched Images with Smooth Blending. In: Barolli, L. (eds) Advances in Intelligent Networking and Collaborative Systems. INCoS 2023. Lecture Notes on Data Engineering and Communications Technologies, vol 182. Springer, Cham. https://doi.org/10.1007/978-3-031-40971-4_44

Download citation

Publish with us

Policies and ethics