Skip to main content

Global Fungal Diversity Estimated from High-Throughput Sequencing

  • Chapter
  • First Online:
Evolution of Fungi and Fungal-Like Organisms

Part of the book series: The Mycota ((MYCOTA,volume 14))

Abstract

Fungi are key players in vital ecosystem services, spanning carbon cycling, decomposition, and varied plant symbioses. Due to their cryptic lifestyle, it was difficult to assess their diversity until the advent of methods of high-throughput sequencing. Based on the papers utilizing high-throughput sequencing approaches to study fungi in natural habitats using the nuclear ribosomal internal transcribed spacer 2 (ITS2) contained in the public open database GlobalFungi (https://globalfungi.com), the current estimate of global fungal diversity is 6.3 million species, considering 97% sequence similarity as a species-level threshold. Of the observed fungi, most belong to Ascomycota and Basidiomycota: 57% and 37% of taxa, respectively. Soil and litter represent the habitats with the highest alpha diversity of fungi followed by air, plant shoots, plant roots, and deadwood. Based on the high-throughput sequencing data, the highest proportion of unknown fungal species is associated with samples of lichen and plant tissues. Climate was identified as the key driver of fungal biogeography. In contrast to plants and most other taxa, fungal diversity in tropics appears to be lower than at high latitudes. Despite limitations, the use of high-throughput sequencing is an important tool for the assessment of diversity, biogeography, and ecology of fungi.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amend AS, Seifert KA, Samson R, Bruns TD (2010) Indoor fungal composition is geographically patterned and more diverse in temperate zones than in the tropics. Proc Natl Acad Sci U S A 107:13748–13753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amundson R, Berhe AA, Hopmans JW, Olson C, Sztein AE, Sparks DL (2015) Soil and human security in the 21st century. Science 348:1261071

    Article  PubMed  Google Scholar 

  • Anslan S, Nilsson RH, Wurzbacher C, Baldrian P, Tedersoo L, Bahram M (2018) Great differences in performance and outcome of high-throughput sequencing data analysis platforms for fungal metabarcoding. MycoKeys 39:29–40

    Article  Google Scholar 

  • Baldrian P, Kolařík M, Štursová M et al (2012) Active and total microbial communities in forest soil are largely different and highly stratified during decomposition. ISME J 6:248–258

    Article  CAS  PubMed  Google Scholar 

  • Baldrian P, Větrovský T, Lepinay C, Kohout P (2022) High-throughput sequencing view on the magnitude of global fungal diversity. Fungal Divers 114:539–547

    Article  CAS  Google Scholar 

  • Bardgett RD, van der Putten WH (2014) Belowground biodiversity and ecosystem functioning. Nature 515:505–511

    Article  CAS  PubMed  Google Scholar 

  • Buéé M, Reich M, Murat C, Morin E, Nilsson RH, Uroz S, Martin F (2009) 454 pyrosequencing analyses of forest soils reveal an unexpectedly high fungal diversity. New Phytol 184:449–456

    Article  PubMed  Google Scholar 

  • Crowther TW, Todd-Brown KEO, Rowe CW et al (2016) Quantifying global soil carbon losses in response to warming. Nature 540:104–108

    Article  CAS  PubMed  Google Scholar 

  • Davison J, Moora M, Opik M et al (2015) Global assessment of arbuscular mycorrhizal fungus diversity reveals very low endemism. Science 349:970–973

    Article  CAS  PubMed  Google Scholar 

  • Delgado-Baquerizo M, Oliverio AM, Brewer TE, Benavent-González A, Eldridge DJ, Bardgett RD, Maestre FT, Singh BK, Fierer N (2018) A global atlas of the dominant bacteria found in soil. Science 359:320–325

    Article  CAS  PubMed  Google Scholar 

  • Glass DJ, Takebayashi N, Olson LE, Taylor DL (2013) Evaluation of the authenticity of a highly novel environmental sequence from boreal forest soil using ribosomal RNA secondary structure modeling. Mol Phylogenet Evol 67:234–245

    Article  CAS  PubMed  Google Scholar 

  • Hanson CA, Fuhrman JA, Horner-Devine MC, Martiny JBH (2012) Beyond biogeographic patterns: processes shaping the microbial landscape. Nat Rev Microbiol 10:497–506

    Article  CAS  PubMed  Google Scholar 

  • Hawksworth DL (2001) The magnitude of fungal diversity: the 1.5 million species estimate revisited. Mycol Res 105:1422–1432

    Article  Google Scholar 

  • Hawksworth DL, Lücking R (2017) Fungal diversity revisited: 2.2 to 3.8 million species. Microbiol Spectr 5:4

    Article  Google Scholar 

  • Hillebrand H (2004) On the generality of the latitudinal diversity gradient. Am Nat 163:192–211

    Article  PubMed  Google Scholar 

  • Hyde KD, Jeewon R, Chen Y-J et al (2020) The numbers of fungi: is the descriptive curve flattening? Fungal Divers 103:219–271

    Article  Google Scholar 

  • Ihrmark K, Bodeker ITM, Cruz-Martinez K et al (2012) New primers to amplify the fungal ITS2 region - evaluation by 454-sequencing of artificial and natural communities. FEMS Microbiol Ecol 82:666–677

    Article  CAS  PubMed  Google Scholar 

  • Jetz W, McPherson JM, Guralnick RP (2012) Integrating biodiversity distribution knowledge: toward a global map of life. Trends Ecol Evol 27:151–159

    Article  PubMed  Google Scholar 

  • Joppa LN, O'Connor B, Visconti P et al (2016) Filling in biodiversity threat gaps. Science 352:416–418

    Article  CAS  PubMed  Google Scholar 

  • Kivlin SN, Emery SM, Rudgers JA (2013) Fungal symbionts alter plant responses to global change. Am J Bot 100:1445–1457

    Article  PubMed  Google Scholar 

  • Kohout P, Sudova R, Janouskova M, Ctvrtlikova M, Hejda M, Pankova H, Slavikova R, Stajerova K, Vosatka M, Sykorova Z (2014) Comparison of commonly used primer sets for evaluating arbuscular mycorrhizal fungal communities: is there a universal solution? Soil Biol Biochem 68:482–493

    Article  CAS  Google Scholar 

  • Koljalg U, Nilsson RH, Abarenkov K et al (2013) Towards a unified paradigm for sequence-based identification of fungi. Mol Ecol 22:5271–5277

    Article  CAS  PubMed  Google Scholar 

  • Kreft H, Jetz W (2007) Global patterns and determinants of vascular plant diversity. Proc Natl Acad Sci U S A 104:5925–5930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kreft H, Jetz W (2010) A framework for delineating biogeographical regions based on species distributions. J Biogeogr 37:2029–2053

    Article  Google Scholar 

  • Lindahl BD, Nilsson RH, Tedersoo L et al (2013) Fungal community analysis by high-throughput sequencing of amplified markers - a user's guide. New Phytol 199:288–299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lindner DL, Carlsen T, Nilsson RH, Davey M, Schumacher T, Kauserud H (2013) Employing 454 amplicon pyrosequencing to reveal intragenomic divergence in the internal transcribed spacer rDNA region in fungi. Ecol Evol 3:1751–1764

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu XZ, Wang QM, Goker M et al (2015) Towards an integrated phylogenetic classification of the Tremellomycetes. Stud Mycol 81:85–147

    Article  PubMed  Google Scholar 

  • Lofgren LA, Uehling JK, Branco S, Bruns TD, Martin F, Kennedy PG (2019) Genome-based estimates of fungal rDNA copy number variation across phylogenetic scales and ecological lifestyles. Mol Ecol 28:721–730

    Article  PubMed  Google Scholar 

  • Lücking R, Dal-Forno M, Sikaroodi M, Gillevet PM, Bungartz F, Moncada B, Yynez-Ayabaca A, Chaves JL, Coca LF, Lawrey JD (2014) A single macrolichen constitutes hundreds of unrecognized species. Proc Natl Acad Sci U S A 111:11091–11096

    Article  PubMed  PubMed Central  Google Scholar 

  • Maestre FT, Delgado-Baquerizo M, Jeffries TC et al (2015) Increasing aridity reduces soil microbial diversity and abundance in global drylands. Proc Natl Acad Sci U S A 112:15684–15689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Newsham KK, Hopkins DW, Carvalhais LC, Fretwell PT, Rushton SP, O'Donnell AG, Dennis PG (2016) Relationship between soil fungal diversity and temperature in the maritime Antarctic. Nat Clim Change 6:182–186

    Article  Google Scholar 

  • Nilsson RH, Wurzbacher C, Bahram M et al (2016) Top 50 most wanted fungi. MycoKeys 12:29–40

    Article  Google Scholar 

  • Nilsson RH, Anslan S, Bahram M, Wurzbacher C, Baldrian P, Tedersoo L (2019a) Mycobiome diversity: high-throughput sequencing and identification of fungi. Nat Rev Microbiol 17:95–109

    Article  CAS  PubMed  Google Scholar 

  • Nilsson RH, Larsson KH, Taylor AFS et al (2019b) The UNITE database for molecular identification of fungi: handling dark taxa and parallel taxonomic classifications. Nucleic Acids Res 47:D259–D264

    Article  CAS  PubMed  Google Scholar 

  • Odriozola I, Navrátilová D, Tláskalová P, Klinerová T, Červenková Z, Kohout P, Větrovský T, Čížková P, Starý M, Baldrian P (2021) Predictors of soil fungal biomass and community composition in temperate mountainous forests in Central Europe. Soil Biol Biochem 161:108366

    Article  CAS  Google Scholar 

  • Peay KG, Kennedy PG, Talbot JM (2016) Dimensions of biodiversity in the earth mycobiome. Nat Rev Microbiol 14:434–447

    Article  CAS  PubMed  Google Scholar 

  • Põlme S, Abarenkov K, Henrik Nilsson R et al (2020) Fungal traits: a user-friendly traits database of fungi and fungus-like stramenopiles. Fungal Divers 105:1–16

    Article  Google Scholar 

  • Purvis A, Hector A (2000) Getting the measure of biodiversity. Nature 405:212–219

    Article  CAS  PubMed  Google Scholar 

  • Schloss PD, Gevers D, Westcott SL (2011) Reducing the effects of PCR amplification and sequencing Artifacts on 16S rRNA-based studies. PLoS One 6:14

    Article  Google Scholar 

  • Schoch CL, Seifert KA, Huhndorf S et al (2012) Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for fungi. Proc Natl Acad Sci U S A 109:6241–6246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seibold S, Müller J, Baldrian P, Cadotte MW, Štursová M, Biedermann PHW, Krah F-S, Bässler C (2019) Fungi associated with beetles dispersing from dead wood – Let's take the beetle bus! Fungal Ecol 39:100–108

    Article  Google Scholar 

  • Smith DP, Peay KG (2014) Sequence depth, not PCR replication, improves ecological inference from next generation DNA sequencing. PLoS One 9:e90234

    Article  PubMed  PubMed Central  Google Scholar 

  • Stockinger H, Kruger M, Schussler A (2010) DNA barcoding of arbuscular mycorrhizal fungi. New Phytol 187:461–474

    Article  CAS  PubMed  Google Scholar 

  • Štursova M, Bárta J, Šantručková H, Baldrian P (2016) Small-scale spatial heterogeneity of ecosystem properties, microbial community composition and microbial activities in a temperate mountain forest soil. FEMS Microbiol Ecol 92:fiw185

    Article  PubMed  Google Scholar 

  • Talbot JM, Bruns TD, Taylor JW et al (2014) Endemism and functional convergence across the north American soil mycobiome. Proc Natl Acad Sci 111:6341–6346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tedersoo L, Bahram M, Polme S et al (2014) Global diversity and geography of soil fungi. Science 346:1256688

    Article  PubMed  Google Scholar 

  • Tedersoo L, Anslan S, Bahram M et al (2015) Shotgun metagenomes and multiple primer pair-barcode combinations of amplicons reveal biases in metabarcoding analyses of fungi. MycoKeys 10:1–43

    Article  Google Scholar 

  • Tedersoo L, Sánchez-Ramírez S, Kõljalg U, Bahram M, Döring M, Schigel D, May T, Ryberg M, Abarenkov K (2018) High-level classification of the fungi and a tool for evolutionary ecological analyses. Fungal Divers 90:135–159

    Article  Google Scholar 

  • Tedersoo L, Anslan S, Bahram M, Kõljalg U, Abarenkov K (2020a) Identifying the ‘unidentified’ fungi: a global-scale long-read third-generation sequencing approach. Fungal Divers 103:273–293

    Article  Google Scholar 

  • Tedersoo L, Anslan S, Bahram M et al (2020b) Regional-scale in-depth analysis of soil fungal diversity reveals strong pH and plant species effects in Northern Europe. Front Microbiol 11:1953

    Article  PubMed  PubMed Central  Google Scholar 

  • Thompson LR, Sanders JG, McDonald D et al (2017) A communal catalogue reveals Earth’s multiscale microbial diversity. Nature 551:457–463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Větrovský T, Baldrian P (2013) Analysis of soil fungal communities by amplicon pyrosequencing: current approaches to data analysis and the introduction of the pipeline SEED. Biol Fertil Soils 49:1027–1037

    Article  Google Scholar 

  • Větrovský T, Kolařík M, Žifčáková L, Zelenka T, Baldrian P (2016) The rpb2 gene represents a viable alternative molecular marker for the analysis of environmental fungal communities. Mol Ecol Resour 16:388–401

    Article  PubMed  Google Scholar 

  • Větrovský T, Kohout P, Kopecký M et al (2019) A meta-analysis of global fungal distribution reveals climate-driven patterns. Nat Commun 10:5142

    Article  PubMed  PubMed Central  Google Scholar 

  • Větrovský T, Morais D, Kohout P et al (2020) GlobalFungi, a global database of fungal occurrences from high-throughput-sequencing metabarcoding studies. Sci Data 7:228

    Article  PubMed  PubMed Central  Google Scholar 

  • Wollan AK, Bakkestuen V, Kauserud H, Gulden G, Halvorsen R (2008) Modelling and predicting fungal distribution patterns using herbarium data. J Biogeogr 35:2298–2310

    Article  Google Scholar 

  • Wu B, Hussain M, Zhang W, Stadler M, Liu X, Xiang M (2019) Current insights into fungal species diversity and perspective on naming the environmental DNA sequences of fungi. Mycology 10:127–140

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Czech Science Foundation (21-17749S).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petr Baldrian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Baldrian, P., Kohout, P., Větrovský, T. (2023). Global Fungal Diversity Estimated from High-Throughput Sequencing. In: Pöggeler, S., James, T. (eds) Evolution of Fungi and Fungal-Like Organisms. The Mycota, vol 14. Springer, Cham. https://doi.org/10.1007/978-3-031-29199-9_10

Download citation

Publish with us

Policies and ethics