Skip to main content

Insights into Laser-Matter Interaction from Inside: Wealth of Processes, Multiplicity of Mechanisms and Possible Roadmaps for Energy Localization

  • Chapter
  • First Online:
Ultrafast Laser Nanostructuring

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 239))

Abstract

Short and ultrashort laser pulses are nowadays an integral part of up-to-date technological solutions in many areas from material micro-/nanoprocessing and synthesis of new materials to quantum computing and biomedicine. The number of laser applications in science and industries is growing precipitously with tendencies of enhancing laser processing precision and reproducibility toward creation of extremely tiny objects. Coupling more laser energy into a smaller material volume in a controllable way is one of the grand challenges, which can only be achieved through a deep understanding of a wealth of the laser-triggered transient processes at different spatiotemporal scales.

The objective of this chapter is to provide a review of the main fundamental linear and nonlinear processes excited by ultrafast lasers in different kinds of materials with the aim to reveal and highlight possible mechanisms, which would enable extreme localization of energy absorption. After summarizing existing knowledge on laser-induced phenomena that includes mechanisms of laser light absorption, heat transfer peculiarities, energy thermalization at ultrafast time scales, and related hydrodynamic phenomena, an overview is given on novel insights into highly nonequilibrium processes gained in recent years via quantum and molecular dynamics simulations. The fundamental part is followed by an analysis of possible techniques and processes, which could enable extreme localization of laser energy absorption both on the surface of material samples and in the bulk. Finally, as an example of laser energy localization alternating at nanoscale, laser-induced periodic surface structures (LIPSS) are discussed. The multiplicity of the mechanisms is demonstrated via a rigorous theoretical analysis and simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We consider here laser pulse durations that are shorter than the electron-phonon coupling time τ e−ph. In general, the heating time (and the corresponding depth of the heated layer) is given by the maximum between the coupling time and the pulse duration, \(\mbox{max}\left (\tau _{\mathrm {e-ph}}, \tau \right )\).

References

  1. D. M. Kane (Ed.), Laser Cleaning II (World Scientific, Singapore, 2007)

    Google Scholar 

  2. J. Han, O. Malek, J. Vleugels, A. Braem, S. Castagne, Ultrafast laser selective phase removal for surface modification of nanocomposite materials. Opt. Express 29, 24834–24845 (2021)

    Article  ADS  Google Scholar 

  3. R. Buividas, M. Mikutis, S. Juodkazis, Surface and bulk structuring of materials by ripples with long and short laser pulses: recent advances. Prog. Quantum Electron. 38, 119–156 (2014)

    Article  ADS  Google Scholar 

  4. K. Phillips, H.H. Gandhi, E. Mazur, S.K. Sundaram, Ultrafast laser processing of materials: a review. Adv. Opt. Photon. 7, 684–712 (2015)

    Article  Google Scholar 

  5. D. Zhang, B. Gökce, S. Barcikowski, Laser synthesis and processing of colloids: fundamentals and applications. Chem. Rev. 117, 3990–4103 (2017)

    Article  Google Scholar 

  6. R. Buividas, G. Gervinskas, A. Tadich, B.C.C. Cowie, V. Mizeikis, A. Vailionis, D. de Ligny, E.G. Gamaly, A.V. Rode, S. Juodkazis, Phase transformation in laser-induced micro-explosion in olivine (Fe,Mg)2SiO4, Adv. Eng. Mater. 16, 767–773 (2014)

    Article  Google Scholar 

  7. K. Sugioka, Progress in ultrafast laser processing and future prospects. Nanophotonics 6, 393–413 (2017)

    Article  Google Scholar 

  8. F. Courvoisier, R. Stoian, A. Couairon, Ultrafast laser micro- and nano-processing with nondiffracting and curved beams. Opt. Laser Technol. 80, 125–137 (2016)

    Article  ADS  Google Scholar 

  9. R. Stoian, Volume photoinscription of glasses: three-dimensional micro and nanostructuring with ultrashort laser pulses. Appl. Phys. A 126, 438 (2020)

    Article  ADS  Google Scholar 

  10. Z. Lin, L.V. Zhigilei, V. Celli, Electron-phonon coupling and electron heat capacity of metals under conditions of strong electron-phonon nonequilibrium. Phys. Rev. B 77, 075133 (2008)

    Article  ADS  Google Scholar 

  11. L.V. Keldysh, Ionization in the field of a strong electromagnetic wave. Sov. Phys. JETP 20, 1307–1314 (1965)

    Google Scholar 

  12. H.M. van Driel, Kinetics of high-density plasmas generated in Si by 1.06- and 0.53-μm picosecond laser pulses. Phys. Rev. B 35, 8166–8176 (1987)

    Google Scholar 

  13. A. Kaiser, B. Rethfeld, M. Vicanek, G. Simon, Microscopic processes in dielectrics under irradiation by subpicosecond laser pulses. Phys. Rev. B 61, 11437–11450 (2000)

    Article  ADS  Google Scholar 

  14. D. Arnold, E. Cartier, Theory of laser-induced free electron heating and impact ionization in wide-band-gap solids. Phys. Rev. B 46, 15102–15115 (1992)

    Article  ADS  Google Scholar 

  15. W.P. Dumke, Spontaneous radiative recombination in semiconductors. Phys. Rev. 105, 139–144 (1957)

    Article  ADS  Google Scholar 

  16. J.P. Vigouroux, J.P. Duraud, A. Le Moel, C. Le Gressus, D.L. Griscom, Electron trapping in amorphous SiO2 studied by charge buildup under electron bombardment. J. Appl. Phys. 57, 5139–5144 (1985)

    Article  ADS  Google Scholar 

  17. P. Martin, S. Guizard, P. Daguzan, G. Petite, P. d’Oliveira, P. Maynadier, M. Pedrix, Subpicosecond study of carrier trapping dynamics in wide-band-gap crystals. Phys. Rev. B 55, 5799–5810 (1997)

    Article  ADS  Google Scholar 

  18. N.M. Bulgakova, Fundamentals of ultrafast laser processing, in Ultrafast Laser Processing: From Micro- to Nanoscale, ed. by K. Sugioka, Y. Cheng Pan (Stanford Publishing, 2013), pp. 99–182

    Google Scholar 

  19. B. Rethfeld, D.S. Ivanov, M.E. Garcia, S.I. Anisimov, Modelling ultrafast laser ablation. J. Phys. D: Appl. Phys. 50, 193001 (2017)

    Article  ADS  Google Scholar 

  20. A.Y. Vorobyev, C. Guo, Reflection of femtosecond laser light in multipulse ablation of metals. J. Appl. Phys. 110, 043102 (2011)

    Article  ADS  Google Scholar 

  21. S.E. Kirkwood, Y.Y. Tsui, R. Fedosejevs, A.V. Brantov, V.Y. Bychenkov, Experimental and theoretical study of absorption of femtosecond laser pulses in interaction with solid copper targets. Phys. Rev. B 46, 144120 (2009)

    Article  ADS  Google Scholar 

  22. A.D. Rakić, A.B. Djurišić, J.M. Elazar, M.L. Majewski, Optical properties of metallic films for vertical-cavity optoelectronic devices. Appl. Opt. 37, 5271–5283 (1998)

    Article  ADS  Google Scholar 

  23. K. Sokolowski-Tinten, D. von der Linde, Generation of dense electron-hole plasmas in silicon. Phys. Rev. B 61, 2643–2650 (2000)

    Article  ADS  Google Scholar 

  24. Y. Ren, J.K. Chen, Y. Zhang, J. Huang, Ultrashort laser pulse energy deposition in metal films with phase changes. Appl. Phys. Lett 98, 191105 (2011)

    Article  ADS  Google Scholar 

  25. D.V. Knyazev, P.R. Levashov, Transport and optical properties of warm dense aluminum in the two-temperature regime: ab initio calculation and semiempirical approximation. Phys. Plasmas 21, 073302 (2014)

    Article  ADS  Google Scholar 

  26. S.I. Ashitkov, P.S. Komarov, V.V. Zhakhovsky, Y.V. Petrov, V.A. Khokhlov, A.A. Yurkevich, D.K. Ilnitsky, N.A. Inogamov, M.B. Agranat, Ablation of gold irradiated by femtosecond laser pulse: experiment and modeling. J. Phys. Conf. Ser. 774, 012097 (2016)

    Article  Google Scholar 

  27. J. Winter, S. Rapp, M. Schmidt, H.P. Huber, Ultrafast laser processing of copper: a comparative study of experimental and simulated transient optical properties. Appl. Surf. Sci. 417, 2–15 (2017)

    Article  ADS  Google Scholar 

  28. P.A. Loboda, N.A. Smirnov, A.A. Shadrin, N.G. Karlykhanov, Simulation of absorption of femtosecond laser pulses in solid-density copper. High Energy Density Phys. 7, 361–370 (2011)

    Article  ADS  Google Scholar 

  29. S. Mazevet, J. Clérouin, V. Recoules, P.M. Anglade, G. Zerah, Ab-initio simulations of the optical properties of warm dense gold. Phys. Rev. Lett. 95, 085002 (2005)

    Article  ADS  Google Scholar 

  30. E. Bévillon, R. Stoian, J.P. Colombier, Nonequilibrium optical properties of transition metals upon ultrafast electron heating. J. Phys.: Condens. Matter 30, 385401 (2018)

    Google Scholar 

  31. M.V. Shugaev, M. He, S.A. Lizunov, Y. Levy, T.J.-Y. Derrien, V.P. Zhukov, N.M. Bulgakova, L.V. Zhigilei, Insights into laser-materials interaction through modeling on atomic and macroscopic scales, in Advances in the Application of Lasers in Materials Science, ed. by P. Ossi. Springer Series in Material Science, vol. 274 (Springer Nature Switzerland AG, 2018), pp. 107–148

    Google Scholar 

  32. T.J.-Y. Derrien, N. Tancogne-Dejean, V.P. Zhukov, H. Appel, A. Rubio, N.M. Bulgakova, Photoionization and transient Wannier-Stark ladder in silicon: first principle simulations versus Keldysh theory. Phys. Rev. B 104, L241201 (2021)

    Article  ADS  Google Scholar 

  33. S.I. Anisimov, B.L. Kapeliovich, T.L. Perel’man, Electron emission from surface of metals induced by ultrashort laser pulses. Sov. Phys. JETP 39, 375–377 (1974)

    ADS  Google Scholar 

  34. S.-S. Wellershoff, J. Hohlfeld, J. Güdde, E. Matthias, The role of electron-phonon coupling in femtosecond laser damage of metals. Appl. Phys. A 69, S99–S107 (1999)

    Google Scholar 

  35. M. Lisowski, P.A. Loukakos, U. Bovensiepen, J. Stähler, C. Gahl, M. Wolf, Ultrafast dynamics of electron thermalization and transport effects in Ru (001). Appl. Phys. A 78, 165–176 (2004)

    Article  ADS  Google Scholar 

  36. M.Z. Mo, Z. Chen, R.K. Li, M. Dunning, B.B.L. Witte, J.K. Baldwin, L.B. Fletcher, J.B. Kim, A. Ng, R. Redmer, A.H. Reid, P. Shekhar, X.Z. Shen, M. Shen, K. Sokolowski-Tinten, Y.Y. Tsui, Y.Q. Wang, Q. Zheng, X.J. Wang, S.H. Glenzer, Heterogeneous to homogeneous melting transition visualized with ultrafast electron diffraction. Science 360, 1451–1455 (2018)

    Article  ADS  Google Scholar 

  37. A. Block, M. Liebel, R. Yu, M. Spector, Y. Sivan, F.J. García de Abajo, N.F. van Hulst, Tracking ultrafast hot-electron diffusion in space and time by ultrafast thermomodulation microscopy. Sci. Adv. 5, eaav8965 (2019)

    Google Scholar 

  38. J.-P. Colombier, P. Combis, F. Bonneau, R. Le Harzic, E. Audouard, Hydrodynamic simulations of metal ablation by femtosecond laser irradiation. Phys. Rev. B 71, 165406 (2005)

    Article  ADS  Google Scholar 

  39. M.E. Povarnitsyn, T.E. Itina, K.V. Khishchenko, P.R. Levashov, Multi-material two-temperature model for simulation of ultrashort laser ablation. Appl. Surf. Sci. 253, 6343–6346 (2007)

    Article  ADS  Google Scholar 

  40. P.R. Levashov, K.V. Khishchenko, Tabular multiphase equations of state for metals and their applications. AIP Conf. Proc. 955, 59–65 (2007)

    ADS  Google Scholar 

  41. Y.V. Petrov, K.P. Migdal, N.A. Inogamov, V.V. Zhakhovsky, Two-temperature equation of state for aluminum and gold with electrons excited by an ultrashort laser pulse. Appl. Phys. B: Lasers Opt. 119, 401–411 (2015)

    Article  ADS  Google Scholar 

  42. S.L. Johnson, M. Savoini, P. Beaud, G. Ingold, U. Staub, F. Carbone, L. Castiglioni, M. Hengsberger, J. Osterwalder, Watching ultrafast responses of structure and magnetism in condensed matter with momentum-resolved probes. Struct. Dyn. 4, 061506 (2017)

    Article  Google Scholar 

  43. B. Mansart, M.J.G. Cottet, G.F. Mancini, T. Jarlborg, S.B. Dugdale, S.L. Johnson, S.O. Mariager, C.J. Milne, P. Beaud, S. Grubel, J.A. Johnson, T. Kubacka, G. Ingold, K. Prsa, H.M. Rønnow, K. Conder, E. Pomjakushina, M. Chergui, F. Carbone, Temperature-dependent electron-phonon coupling in La2−xSrxCuO4 probed by femtosecond X-ray diffraction. Phys. Rev. B 88, 054507 (2013)

    Article  ADS  Google Scholar 

  44. A. Rämer, O. Osmani, B. Rethfeld, Laser damage in silicon: energy absorption, relaxation, and transport. J. Appl. Phys. 116, 053508 (2014)

    Article  ADS  Google Scholar 

  45. N.M. Bulgakova, R. Stoian, A. Rosenfeld, I.V. Hertel, W. Marine, E.E.B. Campbell, A general continuum approach to describe fast electronic transport in pulsed laser irradiated materials: the problem of Coulomb explosion. Appl. Phys. A 81, 345–356 (2005)

    Article  ADS  Google Scholar 

  46. N. Medvedev, H.O. Jeschke, B. Ziaja, Nonthermal phase transitions in semiconductors induced by a femtosecond extreme ultraviolet laser pulse. New J. Phys. 15, 015016 (2013)

    Article  ADS  Google Scholar 

  47. D.S. Ivanov, L.V. Zhigilei, Kinetic limit of heterogeneous melting in metals. Phys. Rev. Lett. 98, 195701 (2007)

    Article  ADS  Google Scholar 

  48. D.S. Ivanov, P.N. Terekhin, S.I. Kudryashov, S.M. Klementov, A.V. Kabashin, M.E. Garcia, B. Rethfeld, I.N. Zavestovskaya, The atomistic perspective of nanoscale laser ablation, in Ultrafast Laser Nanostructuring—The Pursuit of Extreme Scales, Chapter 2, ed. by R. Stoian, J. Bonse (Springer, Berlin, 2022)

    Google Scholar 

  49. A. Becker, N. Aközbek, K. Vijayalakshmi, E. Oral, C.M. Bowden, S.L. Chin, Intensity clamping and re-focusing of intense femtosecond laser pulses in nitrogen molecular gas. Appl. Phys. B 73, 287–290 (2001)

    Article  ADS  Google Scholar 

  50. I. Mirza, N.M. Bulgakova, J. Tomáštík, V. Michálek, O. Haderka, L. Fekete, T. Mocek, Ultrashort pulse laser ablation of dielectrics: thresholds, mechanisms, role of breakdown, Sci. Rep. 6, 39133 (2016)

    Article  ADS  Google Scholar 

  51. A.V. Bulgakov, I. Mirza, N.M. Bulgakova, V.P. Zhukov, R. Machulka, O. Haderka, E.E.B. Campbell, T. Mocek, Initiation of air ionization by ultrashort laser pulses: evidence for a role of metastable state air molecules. J. Phys. D: Appl. Phys. 51, 25LT02 (2018)

    Google Scholar 

  52. J.E. Sipe, J.F. Young, J.S. Preston, H.M. van Driel, Laser-induced periodic surface structure. I. Theory. Phys. Rev. B 27, 1141–1154 (1983)

    Article  ADS  Google Scholar 

  53. A. Couairon, A. Mysyrowicz, Femtosecond filamentation in transparent media. Phys. Rep. 441, 47–189 (2007)

    Article  ADS  Google Scholar 

  54. T. Otobe, Y. Shinohara, S.A. Sato, K. Yabana, Femtosecond time-resolved dynamical Franz-Keldysh effect. Phys. Rev. B 93, 045124 (2016)

    Article  ADS  Google Scholar 

  55. M. Born, E. Wolf, Principles of Optics. Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th edn. (Cambridge University Press, Cambridge, 1980)

    Google Scholar 

  56. S.W. Winkler, I.M. Burakov, R. Stoian, N.M. Bulgakova, A. Husakou, A. Mermillod-Blondin, A. Rosenfeld, D. Ashkenasi, I.V. Hertel, Transient response of dielectric materials exposed to ultrafast laser radiation. Appl. Phys. A 84, 413–422 (2006)

    Article  ADS  Google Scholar 

  57. I.M. Burakov, N.M. Bulgakova, R. Stoian, A. Mermillod-Blondin, E. Audouard, A. Rosenfeld, A. Husakou, I.V. Hertel, Spatial distribution of refractive index variations induced in bulk fused silica by single ultrashort and short laser pulses. J. Appl. Phys. 101, 043506 (2007)

    Article  ADS  Google Scholar 

  58. M. Sheik-Bahae, D.C. Hutchings, D.J. Hagan, E.W. Van Stryland, Dispersion of bound electronic nonlinear refraction in solids. IEEE J. Quantum. Electron. 27, 1296–1309 (1991)

    Article  ADS  Google Scholar 

  59. J.W. Beams, E.O. Lawrence, On the lag of the Kerr effect. Proc. Natl. Acad. Sci. U.S.A. 13, 505 (1927)

    Article  ADS  Google Scholar 

  60. Q. Zhong, J.T. Fourkas, Optical Kerr effect spectroscopy of simple liquids. J. Phys. Chem. B 112, 15529–15539 (2008)

    Article  Google Scholar 

  61. T. Steffen, N.A.C.M. Meinders, K. Duppen, Microscopic origin of the optical Kerr effect response of CS2-pentane binary mixtures. J. Phys. Chem. A 102, 4213–4221 (1998)

    Article  Google Scholar 

  62. R.W. Boyd, Nonlinear Optics (Academic Press, New York, 2008)

    Google Scholar 

  63. A.D. Bristow, N. Rotenberg, H.M. van Driel, Two-photon absorption and Kerr coefficients of silicon for 850–2200 nm. Appl. Phys. Lett. 90, 191104 (2007)

    Article  ADS  Google Scholar 

  64. M.J. Weber, Handbook of Optical Materials (CRC Press, Boca Raton, 2003)

    Google Scholar 

  65. J.H. Marburger, Self-focusing: theory. Prog. Quantum Electron. 4, 35–110 (1975)

    Article  ADS  Google Scholar 

  66. S.L. Chin, T.J. Wang, C. Marceau, J. Wu, J.S. Liu, O. Kosareva, N. Panov, Y.P. Chen, J.F. Daigle, S. Yuana, A. Azarm, W.W. Liue, T. Seideman, H.P. Zeng, M. Richardson, R. Li, Z.Z. Xu, Advances in intense femtosecond laser filamentation in air. Laser Phys. 22, 1–53 (2012)

    Article  ADS  Google Scholar 

  67. F. Ahmed, M. Shamim Ahsan, M. Seop Lee, M.B.G. Jun, Near-field modification of femtosecond laser beam to enhance single-shot pulse filamentation in glass medium. Appl. Phys. A 114, 1161–1165 (2014)

    Article  ADS  Google Scholar 

  68. A. Vogel, K. Nahen, D. Theisen, J. Noack, Plasma formation in water by picosecond and nanosecond Nd:YAG laser pulses—Part I: optical breakdown at threshold and superthreshold irradiance. IEEE J. Sel. Top. Quantum Electron. 2, 847–860 (1996)

    Article  ADS  Google Scholar 

  69. G. Daminelli, J. Krüger, W. Kautek, Femtosecond laser interaction with silicon under water confinement. Thin Solid Films 467, 334–341 (2004)

    Article  ADS  Google Scholar 

  70. N.M. Bulgakova, V.P. Zhukov, Y.P. Meshcheryakov, Theoretical treatments of ultrashort pulse laser processing of transparent materials: toward understanding the volume nanograting formation and “quill” writing effect. Appl. Phys. B 113, 437 (2013)

    Article  ADS  Google Scholar 

  71. V.E. Gruzdev, Photoionization rate in wide band-gap crystals. Phys. Rev. B 75, 205106 (2007)

    Article  ADS  Google Scholar 

  72. K. Eidmann, J. Meyer-ter Vehn, T. Schlegel, S. Hüller, Hydrodynamic simulation of subpicosecond laser interaction with solid-density matter. Phys. Rev. E 62, 1202 (2000)

    Article  ADS  Google Scholar 

  73. T.E. Itina, N.S. Shcheblanov, Collision frequencies and absorption calculations for ultra-short laser interactions with dielectric materials. Proc. SPIE 9065, 906506 (2013)

    Article  Google Scholar 

  74. S.S. Juodkazis, H. Misawa, E. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, V.T. Tikhonchuk, Laser-induced microexplosion confined in the bulk of a sapphire crystal: evidence of multimegabar pressures. Phys. Rev. Lett. 96, 166101 (2006)

    Article  ADS  Google Scholar 

  75. E. Efimenko, A. Kim, M. Quiroga-Teixeiro, Ionization-induced small-scaled plasma structures in tightly focused ultrashort laser pulses. Phys. Rev. Lett. 102, 015002 (2009)

    Article  ADS  Google Scholar 

  76. E.V. Zavedeev, V.V. Kononenko, V.M. Gololobov, V.I. Konov, Modeling the effect of fs light delocalization in Si bulk. Laser Phys. Lett. 11, 036002 (2014)

    Article  ADS  Google Scholar 

  77. R. Buschlinger, S. Nolte, U. Peschel, Self-organized pattern formation in laser-induced multiphoton ionization. Phys. Rev. B 89, 184306 (2014)

    Article  ADS  Google Scholar 

  78. E.V. Zavedeev, V.V. Kononenko, V.I. Konov, Delocalization of femtosecond laser radiation in crystalline Si in the mid-IR range. Laser Phys. 26, 016101 (2016)

    Article  ADS  Google Scholar 

  79. V.P. Zhukov, N.M. Bulgakova, M.P. Fedoruk, Nonlinear Maxwell´s and Schrödinger equations for describing the volumetric interaction of femtosecond laser pulses with transparent solid dielectrics: effect of the boundary conditions. J. Opt. Technol. 84, 439 (2017)

    Article  Google Scholar 

  80. T. Otobe, Y. Shinohara, S.A. Sato, K. Yabana, Theory for electron excitation in dielectrics under an intense linear and circularly polarized laser fields. J. Phys. Soc. Jpn. 88, 024706 (2019)

    Article  ADS  Google Scholar 

  81. H.R. Reiss, V.P. Krainov, Generalized Bessel functions in tunnelling ionization. J. Phys. A: Math. Gen. 36, 5575–5585 (2003)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  82. V.E. Gruzdev, Laser-induced ionization of solids: back to Keldysh. Proc. SPIE 5647, 480–492 (2005)

    Article  ADS  Google Scholar 

  83. N.S. Shcheblanov, M.E. Povarnitsyn, P.N. Terekhin, S. Guizard, A. Couairon, Nonlinear photoionization of transparent solids: a nonperturbative theory obeying selection rules. Phys. Rev. A 96, 063410 (2017)

    Article  ADS  Google Scholar 

  84. B. Chimier, O. Utéza, N. Sanner, M. Sentis, T. Itina, P. Lassonde, F. Légaré, F. Vidal, J.C. Kieffer, Damage and ablation thresholds of fused-silica in femtosecond regime. Phys. Rev. B 84, 094104 (2011)

    Article  ADS  Google Scholar 

  85. V. Gruzdev, Fundamental mechanisms of laser damage of dielectric crystals by ultrashort pulse: ionization dynamics for the Keldysh model. Opt. Eng. 53, 122515 (2014)

    Article  ADS  Google Scholar 

  86. P. Jürgens, M. Jupé, M. Gyamfi, D. Ristau, Ultrafast polychromatic ionization of dielectric solids. Proc. SPIE 10014, 100141C (2016)

    Article  Google Scholar 

  87. O. Varlamova, Self-organized pattern formation upon femtosecond laser ablation by circularly polarized light. Appl. Surf. Sci. 252, 4702–4706 (2006)

    Article  ADS  Google Scholar 

  88. J. Reif, Femtosecond laser induced nanostructure formation: self-organization control parameters. Appl. Phys. A 92, 1019–1024 (2008)

    Article  ADS  Google Scholar 

  89. Y. Tang, J. Yang, B. Zhao, M. Wang, X. Zhu, Control of periodic ripples growth on metals by femtosecond laser ellipticity. Opt. Express 20, 25826–25833 (2012)

    Article  ADS  Google Scholar 

  90. G. Lazzini, L. Romoli, F. Tantussi, F. Fuso, Nanostructure patterns on stainless-steel upon ultrafast laser ablation with circular polarization. Opt. Laser Technol. 107, 435–442 (2018)

    Article  ADS  Google Scholar 

  91. V.V. Temnov, K. Sokolowski-Tinten, P. Zhou, A. El-Khamhawy, D. von der Linde, Multiphoton ionization in dielectrics: comparison of circular and linear polarization. Phys. Rev. Lett. 97, 237403 (2006)

    Article  ADS  Google Scholar 

  92. J.R. Gulley, W.M. Dennis, Ultrashort-pulse propagation through free-carrier plasmas. Phys. Rev. A 81, 033818 (2010)

    Article  ADS  Google Scholar 

  93. D. Grojo, S. Leyder, P. Delaporte, W. Marine, M. Sentis, O. Utéza, Long-wavelength multiphoton ionization inside band-gap solids. Phys. Rev. B 88, 195135 (2013)

    Article  ADS  Google Scholar 

  94. W.V. Houston, Acceleration of electrons in a crystal lattice. Phys. Rev. 57, 184–186 (1940)

    Article  MathSciNet  ADS  Google Scholar 

  95. N. Tancogne-Dejean, O.D. Mücke, F.X. Kärtner, A. Rubio, Ellipticity dependence of high-harmonic generation in solids originating from coupled intraband and interband dynamics. Nat. Commun. 8, 745 (2017)

    Article  ADS  Google Scholar 

  96. D.N. Basov, R.D. Averitt, D. Hsieh, Towards properties on demand in quantum materials. Nat. Mater. 16, 1077–1088 (2017)

    Article  ADS  Google Scholar 

  97. G.E. Topp, N. Tancogne-Dejean, A.F. Kemper, A. Rubio, M.A. Sentef, All-optical nonequilibrium pathway to stabilising magnetic Weyl semimetals in pyrochlore iridates. Nat. Commun. 9, 4452 (2018)

    Article  ADS  Google Scholar 

  98. S. Yamada, K. Yabana, Symmetry properties of attosecond transient absorption spectroscopy in crystalline dielectrics. Phys. Rev. B 101, 165128 (2020)

    Article  ADS  Google Scholar 

  99. Y.H. Wang, H. Steinberg, P. Jarillo-Herrero, N. Gedik, Observation of Floquet-Bloch states on the surface of a topological insulator. Science 342, 453 (2013)

    Article  ADS  Google Scholar 

  100. M. Kozák, T. Otobe, M. Zukerstein, F. Trojánek, P. Malý, Anisotropy and polarization dependence of multiphoton charge carrier generation rate in diamond. Phys. Rev. B 99, 104305 (2019)

    Article  ADS  Google Scholar 

  101. X. Li, W. Rong, L. Jiang, K. Zhang, C. Li, Q. Cao, G. Zhang, Y. Lu, Generation and elimination of polarization-dependent ablation of cubic crystals by femtosecond laser radiation. Opt. Express 22, 30170 (2014)

    Article  ADS  Google Scholar 

  102. L. Jiang, W. Han, X. Li, Q. Wang, F. Meng, Y. Lu, Crystal orientation dependence of femtosecond laser-induced periodic surface structure on (100) silicon. Opt. Lett. 39, 3114–3117 (2014)

    Article  ADS  Google Scholar 

  103. L. Museur, G.D. Tsibidis, A. Manousaki, D. Anglos, A. Kanaev, Surface structuring of rutile TiO2 (100) and (001) single crystals with femtosecond pulsed laser irradiation. J. Opt. Soc. Am. B 35, 2600 (2018)

    Article  ADS  Google Scholar 

  104. C. Florian, D. Fischer, K. Freiberg, M. Duwe, M. Sahre, S. Schneider, A. Hertwig, J. Krüger, M. Rettenmayr, U. Beck, A. Undisz, J. Bonse, Single femtosecond laser-pulse-induced superficial amorphization and re-crystallization of silicon. Materials 14, 1651 (2021)

    Article  ADS  Google Scholar 

  105. S.A. Sato, K. Yabana, Y. Shinohara, T. Otobe, K.-M. Lee, G. F. Bertsch, Time-dependent density functional theory of high-intensity short-pulse laser irradiation on insulators. Phys. Rev. B 92, 205413 (2015)

    Article  ADS  Google Scholar 

  106. K.-M. Lee, C. Min Kim, S.A. Sato, T. Otobe, Y. Shinohara, K. Yabana, T. Moon Jeong, First-principles simulation of the optical response of bulk and thin-film α-quartz irradiated with an ultrashort intense laser pulse. J. Appl. Phys. 115, 053519 (2014)

    Article  ADS  Google Scholar 

  107. M. Uemoto, S. Kurata, N. Kawaguchi, K. Yabana, First-principles study of ultrafast and nonlinear optical properties of graphite thin films. Phys. Rev. B 103, 085433 (2021)

    Article  ADS  Google Scholar 

  108. B.C. Stuart, M.D. Feit, S. Herman., A.M. Rubenchik, B.W. Shore, M.D. Perry, Nanosecond-to-femtosecond laser-induced breakdown in dielectrics. Phys. Rev. B 53, 1749–1761 (1995)

    Google Scholar 

  109. N. Varkentina, N. Sanner, M. Lebugle, M. Sentis, O. Uteza, Absorption of a single 500 fs laser pulse at the surface of fused silica: energy balance and ablation efficiency. J. Appl. Phys. 114, 173105 (2013)

    Article  ADS  Google Scholar 

  110. A. Schiffrin, T. Paasch-Colberg, N. Karpowicz, V. Apalkov, D. Gerster, S. Mühlbrandt, M. Korbman, J. Reichert, M. Schultze, S. Holzner, J.V. Barth, R. Kienberger, R. Ernstorfer, V.S. Yakovlev, M.I. Stockman, F. Krausz, Optical-field-induced current in dielectrics. Nature 493, 70–74 (2012)

    Article  ADS  Google Scholar 

  111. M. Durach, A. Rusina, M.F. Kling, M.I. Stockman, Predicted ultrafast dynamic metallization of dielectric nanofilms by strong single-cycle optical fields. Phys. Rev. Lett. 107, 086602 (2011)

    Article  ADS  Google Scholar 

  112. C. Schmidt, J. Bühler, A.-C. Heinrich, J. Allerbeck, R. Podzimski, D. Berghoff, T. Meier, W.G. Schmidt, C. Reichl, W. Wegscheider, D. Brida, A. Leitenstorfer, Signatures of transient Wannier-Stark localization in bulk gallium arsenide. Nat. Commun. 9, 2890 (2018)

    Article  ADS  Google Scholar 

  113. M. Schultze, E.M. Bothschafter, A. Sommer, S. Holzner, W. Schweinberger, M. Fiess, M. Hofstetter, R. Kienberger, V. Apalkov, V.S. Yakovlev, M.I. Stockman, F. Krausz, Controlling dielectrics with the electric field of light. Nature 493, 75–78 (2012)

    Article  ADS  Google Scholar 

  114. O. Kwon, T. Paasch-Colberg, V. Apalkov, B.-K. Kim, J.-J. Kim, M.I. Stockman, D. Kim, Semimetallization of dielectrics in strong optical fields. Sci. Rep. 6, 21272 (2016)

    Article  ADS  Google Scholar 

  115. F. Sekiguchi, T. Mochizuki, C. Kim, H. Akiyama, L.N. Pfeiffer, K.W. West, R. Shimano, Anomalous metal phase emergent on the verge of an exciton Mott transition. Phys. Rev. Lett. 118, 067401 (2017)

    Article  ADS  Google Scholar 

  116. M. Combescot, Polariton versus optical Stark effect: an old concept revisited. Solid State Commun. 74, 291–294 (1990)

    Article  ADS  Google Scholar 

  117. M. Durach, A. Rusina, M.F. Kling, M.I. Stockman, Metallization of nanofilms in strong adiabatic electric fields. Phys. Rev. Lett. 105, 086803 (2010)

    Article  ADS  Google Scholar 

  118. V. Rokaj, M. Ruggenthaler, F.G. Eich, A. Rubio, Free electron gas in cavity quantum electrodynamics. Phys. Rev. Res. 4, 013012 (2022)

    Article  Google Scholar 

  119. V.M. Agranovich, A.A. Maradudin, D. Mills, Surface Polaritons, in Electromagnetic Waves at Surfaces and Interfaces. Modern Problems in Condensed Matter Physics (1982)

    Google Scholar 

  120. A.M. Bonch-Bruevich, M.N. Libenson, V.S. Makin, V.A. Trubaev, Surface electromagnetic waves in optics. Opt. Eng. 31, 718–730 (1992)

    Article  ADS  Google Scholar 

  121. J.E. Sipe, Surface electrodynamics: radiation fields, surface polaritons, and radiation remnants. Can. J. Phys. 63, 104–113 (1985)

    Article  ADS  Google Scholar 

  122. M.A.L. Marques, N.T. Maitra, F.M.S. Nogueira, E.K.U. Gross, A. Rubio (eds.), Fundamentals of Time-dependent Density Functional Theory. Lecture Notes in Physics (Springer, New York, 2011)

    Google Scholar 

  123. P.N. Terekhin, O. Benhayoun, S.T. Weber, D.S. Ivanov, M.E. Garcia, B. Rethfeld, Influence of surface plasmon polaritons on laser energy absorption and structuring of surfaces. Appl. Surf. Sci. 512, 144420 (2020)

    Article  Google Scholar 

  124. O. Benhayoun, P.N. Terekhin, D.S. Ivanov, B. Rethfeld, M. Garcia, Theory for heating of metals assisted by surface plasmon polaritons. Appl. Surf. Sci. 569, 150427 (2021)

    Article  Google Scholar 

  125. F. Buchholz, I. Theophilou, K.J.H. Giesbertz, M. Ruggenthaler, A. Rubio, Light-matter hybrid-orbital-based first-principles methods: the influence of the polariton statistics. J. Chem. Theory Comput. 16, 5601–5620 (2020)

    Article  Google Scholar 

  126. S. Raza, G. Toscano, A.-P. Jauho, M. Wubs, N.A. Mortensen, Unusual resonances in nanoplasmonic structures due to nonlocal response. Phys. Rev. B 84, 121412(R) (2011)

    Google Scholar 

  127. P. Kahl, D. Podbiel, C. Schneider, A. Makris, S. Sindermann, C. Witt, D. Kilbane, M.H.-V. Hoegen, M. Aeschlimann, F.M. Zu Heringdorf, Direct observation of surface plasmon polariton propagation and interference by time-resolved imaging in normal-incidence two photon photoemission microscopy. Plasmonics 13, 239–246 (2018)

    Article  Google Scholar 

  128. A.V. Zayats, I.I. Smolyaninoy, A.A. Maradudin, Nano-optics of surface plasmon polaritons. Phys. Rep. 408, 131–314 (2005)

    Article  ADS  Google Scholar 

  129. J.J. Burke, G.I. Stegeman, T. Tamir, Surface-polariton-like waves guided by thin, lossy metal films. Phys. Rev. B 33, 5186 (1986)

    Article  ADS  Google Scholar 

  130. S.A. Maier, Plasmonics, Fundamentals and Applications (Springer, Berlin, 2007)

    Book  Google Scholar 

  131. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, Berlin, 1986)

    Google Scholar 

  132. T.J.-Y. Derrien, J. Krüger, J. Bonse, Properties of surface plasmon polaritons on lossy materials: lifetimes, periods and excitation conditions. J. Opt. 18, 115007 (2016)

    Article  ADS  Google Scholar 

  133. L. Piazza, T.T.A. Lummen, E. Quiñonez, Y. Murooka, B.W. Reed, B. Barwick, F. Carbone, Simultaneous observation of the quantization and the interference pattern of a plasmonic near-field. Nat. Commun. 6, 6407 (2015)

    Article  ADS  Google Scholar 

  134. Y. Dai, Z. Zhou, A. Ghosh, R.S.K. Mong, A. Kubo, C.-B. Huang, H. Petek, Plasmonic topological quasiparticle on the nanometre and femtosecond scales. Nature 588, 616–619 (2020)

    Article  ADS  Google Scholar 

  135. H. Liu, P. Lalanne, Microscopic theory of the extraordinary optical transmission. Nature 452, 728–731 (2008)

    Article  ADS  Google Scholar 

  136. S. Palomba, L. Novotny, Nonlinear excitation of surface plasmon polaritons by four-wave mixing. Phys. Rev. Lett. 101, 056802 (2008)

    Article  ADS  Google Scholar 

  137. J. Renger, R. Quidant, N. van Hulst, S. Palomba, L. Novotny, Free-space excitation of propagating surface plasmon polaritons by nonlinear four-wave mixing. Phys. Rev. Lett. 103, 266802 (2009)

    Article  ADS  Google Scholar 

  138. D.N. Basov, A. Asenjo-Garcia, P.J. Schuck, X. Zhu, A. Rubio, Polariton panorama. Nanophotonics 10, 549–577 (2020)

    Article  Google Scholar 

  139. D.N. Basov, M.M. Fogler, F.J. Garcia de Abajo, Polaritons in van der Waals materials. Science 354, aag1992 (2016)

    Google Scholar 

  140. W.L. Barnes, A. Dereux, T.W. Ebbesen, Surface plasmon subwavelength optics. Nature 424, 824–830 (2003)

    Article  ADS  Google Scholar 

  141. S. Latini, E. Ronca, U. De Giovannini, H. Hübener, A. Rubio, Cavity control of excitons in two-dimensional materials. Nano Lett. 19, 3473–3479 (2019)

    Article  ADS  Google Scholar 

  142. R.J. Bell, R.W. Alexander, W.F. Parks, G. Kovener, Surface excitations in absorbing media. Opt. Commun. 8, 147 (1973)

    Article  ADS  Google Scholar 

  143. R.W. Alexander, G.S. Kovener, R.J. Bell, Dispersion curves for surface electromagnetic waves with damping. Phys. Rev. Lett. 32, 154 (1974)

    Article  ADS  Google Scholar 

  144. I. Razdolski, A.L. Chekhov, A.I. Stognij, A. Stupakiewicz, Ultrafast transport and relaxation of hot plasmonic electrons in metal-dielectric heterostructures. Phys. Rev. B 100, 045412 (2019)

    Article  ADS  Google Scholar 

  145. I. Gnilitskyi, T.J.-Y. Derrien, Y. Levy, N.M. Bulgakova, T. Mocek, L. Orazi, High-speed manufacturing of highly regular femtosecond laser-induced periodic surface structures: physical origin of regularity. Sci. Rep. 7, 8485 (2017)

    Article  ADS  Google Scholar 

  146. A. Möhl, S. Kaldun, C. Kunz, F. A. Müller, U. Fuchs, S. Gräf, Tailored focal beam shaping and its application in laser material processing. J. Laser Appl. 31, 042019 (2019)

    Article  ADS  Google Scholar 

  147. A. Batal, A. Michalek, A. Garcia-Giron, V. Nasrollahi, P. Penchev, R. Sammons, S. Dimov, Effects of laser processing conditions on wettability and proliferation of Saos-2 cells on CoCrMo alloy surfaces, Adv. Opt. Technol. 91, 67–78 (2019)

    Google Scholar 

  148. Y.-H. Liu, K.-K. Kuo, C.-W. Cheng, Femtosecond laser-induced periodic surface structures on different tilted metal surfaces. Nanomaterials 10, 2540 (2020)

    Article  Google Scholar 

  149. M. Huang, Y. Cheng, F. Zhao, Z. Xu, The significant role of plasmonic effects in femtosecond laser-induced grating fabrication on the nanoscale. Ann. Phys.-Berlin S25, 74–86 (2013)

    Article  ADS  Google Scholar 

  150. M. Huang, Z. Xu, Spontaneous scaling down of femtosecond laser-induced apertures towards the 10-nanometer level: the excitation of quasistatic surface plasmons. Laser Photon. Rev. 8, 633–652 (2014)

    Article  ADS  Google Scholar 

  151. B. Prade, J.Y. Vinet, A. Mysyrowicz, Guided optical waves in planar heterostructures with negative dielectric constant. Phys. Rev. B 44, 13556 (1991)

    Article  ADS  Google Scholar 

  152. T.J.-Y. Derrien, R. Koter, J. Krüger, S. Höhm, A. Rosenfeld, J. Bonse, Plasmonic formation mechanism of periodic 100-nm-structures upon femtosecond laser irradiation of silicon in water. J. Appl. Phys. 116, 074902 (2014)

    Article  ADS  Google Scholar 

  153. A.V. Dostovalov, T.J.-Y. Derrien, S.A. Lizunov, F. Přeučil, K.A. Okotrub, T. Mocek, V.P. Korolkov, S.A. Babin, N.M. Bulgakova, LIPSS on thin metallic films: new insights from multiplicity of laser-excited electromagnetic modes and efficiency of metal oxidation. Appl. Surf. Sci. 491, 650–658 (2019)

    Article  ADS  Google Scholar 

  154. P. Daguzan, S. Guizard, P. Martin, G. Petite, Time-resolved studies of free carriers in insulators, in Ultrafast Processes in Spectroscopy, ed. by O. Svelto, S. De Silvestri, G. Denardo. (Springer, Boston, 1996), pp. 547–551

    Google Scholar 

  155. D.S. Ivanov, L.V. Zhigilei, Combined atomistic-continuum modeling of short-pulse laser melting and disintegration of metal films. Phys. Rev. B 68, 064114 (2003)

    Article  ADS  Google Scholar 

  156. M.V. Shugaev, M. He, Y. Levy, A. Mazzi, A. Miotello, N.M. Bulgakova, L.V. Zhigilei, Laser-induced thermal processes: heat transfer, generation of stresses, melting and solidification, vaporization, and phase explosion, in Handbook of Laser Micro- and Nano-Engineering, ed. by K. Sugioka (Springer Nature Switzerland AG, 2021), pp. 83–163

    Google Scholar 

  157. V. Schultze, M. Wagner, Laser-induced forward transfer of aluminium. Appl. Surf. Sci. 52, 303–309 (1991)

    Article  ADS  Google Scholar 

  158. M.V. Shugaev, N.M. Bulgakova, Thermodynamic and stress analysis of laser-induced forward transfer of metals. Appl. Phys. A 101, 103–109 (2010)

    Article  ADS  Google Scholar 

  159. G. Heise, M. Domke, J. Konrad, S. Sarrach, J. Sotrop, H.P. Huber, Laser lift-off initiated by direct induced ablation of different metal thin films with ultra-short laser pulses. J. Phys. D: Appl. Phys. 45, 315303 (2012)

    Article  ADS  Google Scholar 

  160. M. Domke, L. Nobile, S. Rapp, S. Eiselen, J. Sotrop, H.P. Huber, M. Schmidt, Understanding thin film laser ablation: the role of the effective penetration depth and the film thickness. Phys. Proc. 56, 1007–1014 (2014)

    Article  ADS  Google Scholar 

  161. N.T. Goodfriend, S.V. Starinskiy, O. Nerushev, N.M. Bulgakova, A.V. Bulgakov, E.E.B. Campbell, Laser pulse duration dependence of blister formation on back-radiated Ti thin films for BB-LIFT. Appl. Phys. A 122, 154 (2016)

    Article  ADS  Google Scholar 

  162. M. Lenzner, F. Krausz, J. Krüger, W. Kautek, Photoablation with sub-10 fs laser pulses. Appl. Surf. Sci. 154–155, 11–16 (2000)

    Article  ADS  Google Scholar 

  163. W.D. Kingery, Factors affecting thermal stress resistance of ceramic materials. J. Am. Ceram. Soc. 38, 3–15 (1955)

    Article  Google Scholar 

  164. B.C. Stuart, M.D. Feit, A.M. Rubenchik, B.W. Shore, M.D. Perry, Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses. Phys. Rev. Lett. 74, 2248–2251 (1995)

    Article  ADS  Google Scholar 

  165. E. Vanagas, J. Kawai, D. Tuzhilin, I. Kudryashov, A. Mizuyama, K. G. Nakamura, K.-i. Kondo, S.-Y. Koshihara, M. Takesada, K. Matsuda, S. Juodkazis, V. Jarutis, S. Matsuo, H. Misawa, Glass cutting by femtosecond pulsed irradiation. J. Micro. Nanolithogr. MEMS MOEMS 3, 358–363 (2004)

    Article  ADS  Google Scholar 

  166. T. Ueda, K. Yamada, K. Oiso, A. Hosokawa, Thermal stress cleaving of brittle materials by laser beam. CIRP Ann. 51, 149–152 (2002)

    Article  Google Scholar 

  167. K. Yamamoto, N. Hasaka, H. Morita, E. Ohmura, Three-dimensional thermal stress analysis on laser scribing of glass. Precis. Eng. 32, 301–308 (2008)

    Article  Google Scholar 

  168. E.G. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, V.T. Tikhonchuk, Laser-matter interaction in the bulk of a transparent solid: confined microexplosion and void formation. Phys. Rev. B 73, 214101 (2006)

    Article  ADS  Google Scholar 

  169. K.M. Davis, K. Miura, N. Sugimoto, K. Hirao, Writing waveguides in glass with a femtosecond laser. Opt. Lett. 21, 1729–1731 (1996)

    Article  ADS  Google Scholar 

  170. R. Stoian, C. D’Amico, M.K. Bhuyan, G. Cheng, Ultrafast laser photoinscription of large-mode-area waveguiding structures in bulk dielectrics. Opt. Laser Technol. 80, 98–103 (2016)

    Article  ADS  Google Scholar 

  171. A. Mermillod-Blondin, I.M. Burakov, Y.P. Meshcheryakov, N.M. Bulgakova, E. Audouard, A. Rosenfeld, A. Husakou, I.V. Hertel, R. Stoian, Flipping the sign of refractive index changes in ultrafast and temporally shaped laser-irradiated borosilicate crown optical glass at high repetition rate. Phys. Rev. B 77, 104205 (2008)

    Article  ADS  Google Scholar 

  172. M. Sakakura, M. Terazima, Initial temporal and spatial changes of the refractive index induced by focused femtosecond pulsed laser irradiation inside a glass. Phys. Rev. B 71, 024113 (2005)

    Article  ADS  Google Scholar 

  173. A. Mermillod-Blondin, J. Bonse, A. Rosenfeld, I.V. Hertel, Y.P. Meshcheryakov, N.M. Bulgakova, E. Audouard, R. Stoian, Dynamics of femtosecond laser induced voidlike structures in fused silica. Appl. Phys. Lett. 94, 041911 (2009)

    Article  ADS  Google Scholar 

  174. M. Sakakura, Y. Shimotsuma, N. Fukuda, K. Miura, Transient strain distributions during femtosecond laser-induced deformation inside LiF and MgO single crystals. J. Appl. Phys. 118, 023106 (2015)

    Article  ADS  Google Scholar 

  175. V.P. Scripov, Metastable Liquids (Wiley, New York, 1974)

    Google Scholar 

  176. Y.B. Rumer, M.S. Ryvkin, Thermodynamics, Statistical Physics and Kinetics (Mir Publishers, Moscow, 1980)

    Google Scholar 

  177. B. Rethfeld, K. Sokolowski-Tinten, D. von der Linde, Ultrafast thermal melting of laser-excited solids by homogeneous nucleation. Phys. Rev. B 65, 092103 (2002)

    Article  ADS  Google Scholar 

  178. B.J. Siwick, J.R. Dwyer, R.E. Jordan, R.J.D. Miller, An atomic-level view of melting using femtosecond electron diffraction. Science 302, 1382–1385 (2003)

    Article  ADS  Google Scholar 

  179. R. Ernstorfer, M. Harb, C.T. Hebeisen, G. Sciaini, T. Dartigalongue, R.J.D. Miller, The formation of warm dense matter: experimental evidence for electronic bond hardening in gold. Science 323, 1033–1037 (2009)

    Article  ADS  Google Scholar 

  180. S.-N. Luo, T.J. Ahrens, T. Çağın, A. Strachan, W.A. Goddard, D.C. Swift, Maximum superheating and undercooling: systematics, molecular dynamics simulations, and dynamic experiments. Phys. Rev. B 68, 134206 (2003)

    Article  ADS  Google Scholar 

  181. Z. Lin, E. Leveugle, E.M. Bringa, L.V. Zhigilei, Molecular dynamics simulation of laser melting of nanocrystalline Au. J. Phys. Chem. C 114, 5686–5699 (2010)

    Article  Google Scholar 

  182. C. Wu, L.V. Zhigilei, Microscopic mechanisms of laser spallation and ablation of metal targets from large-scale molecular dynamics simulations. Appl. Phys. A 114, 11–32 (2014)

    Article  ADS  Google Scholar 

  183. N.M. Bulgakova, A.V. Bulgakov, Pulsed laser ablation of solids: transition from normal vaporization to phase explosion. Appl. Phys. A 73, 199–208 (2001)

    Article  ADS  Google Scholar 

  184. B.N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, A. Tünnermann, Femtosecond, picosecond and nanosecond laser ablation of solids. Appl. Phys. A 63, 109–115 (1996)

    Article  ADS  Google Scholar 

  185. C. Körner, R. Mayerhofer, M. Hartmann, H.W. Bergmann, Physical and material aspects in using visible laser pulses of nanosecond duration for ablation. Appl. Phys. A 63, 123–131 (1996)

    Article  ADS  Google Scholar 

  186. Y. Yao, L. K. Falk, R. E. Morjan, O. Nerushev, E.E.B. Campbell, Synthesis of carbon nanotube films by thermal CVD in the presence of supported catalyst particles. Part I: the nanotube film. J. Mater. Sci.: Mater. Electron. 15, 583–594 (2004)

    Google Scholar 

  187. S.J. Henley, J.D. Carrey, S.R.P. Silva, Pulsed-laser-induced nanoscale island formation in thin metal-on-oxide films. Phys. Rev. B 72, 195408 (2005)

    Article  ADS  Google Scholar 

  188. Y. Kojima, T. Kato, Nanoparticle formation in au thin films by electron-beam-induced dewetting. Nanotechnology 19, 255605 (2005)

    Article  ADS  Google Scholar 

  189. Y. Oh, M. Lee, Single-pulse transformation of Ag thin film into nanoparticles via laser-induced dewetting. Appl. Surf. Sci. 399, 554–564 (2017)

    Article  ADS  Google Scholar 

  190. M. Dasbach, H.M. Reinhardt, N.A. Hampp, Formation of highly ordered platinum nanowire arrays on silicon via laser-induced self-organization. Nanomaterials 9, 1031 (2019)

    Article  Google Scholar 

  191. U. Zywietz, A.B. Evlyukhin, C. Reinhardt, B.N. Chichkov, Laser printing of silicon nanoparticles with resonant optical electric and magnetic responses. Nat. Commun. 5, 3402 (2014)

    Article  ADS  Google Scholar 

  192. Y. Nakata, T. Okada, M. Maeda, Nano-sized hollow bump array generated by single femtosecond laser pulse. Jpn. J. Appl. Phys. 42, L1452–L1454 (2003)

    Article  ADS  Google Scholar 

  193. F. Korte, J. Koch, B.N. Chichkov, Formation of microbumps and nanojets on gold targets by femtosecond laser pulses. Appl. Phys. A 79, 879–881 (2004)

    Article  ADS  Google Scholar 

  194. E.L. Gurevich, S.V. Gurevich, Laser induced periodic surface structures induced by surface plasmons coupled via roughness. Appl. Surf. Sci. 302, 118–123 (2014)

    Article  ADS  Google Scholar 

  195. E.L. Gurevich, Mechanisms of femtosecond LIPSS formation induced by periodic surface temperature modulation. Appl. Surf. Sci. 374, 56–60 (2016)

    Article  ADS  Google Scholar 

  196. D.V. Pavlov, S.O. Gurbatov, S.I. Kudryashov, E.L. Gurevich, A.A. Kuchmizhak, Laser-induced surface relief nanocrowns as a manifestation of nanoscale Rayleigh-Plateau hydrodynamic instability. Appl. Surf. Sci. 511, 145463 (2014)

    Article  Google Scholar 

  197. C.-Y. Shih, R. Streubel, J. Heberle, A. Letzel, M. V. Shugaev, C. Wu, M. Schmidt, B. Gökce, S. Barcikowski, L.V. Zhigilei, Two mechanisms of nanoparticle generation in picosecond laser ablation in liquids: the origin of the bimodal size distribution. Nanoscale 10, 6900–6910 (2018)

    Article  Google Scholar 

  198. A. Rudenko, A. Abou-Saleh, F. Pigeon, C. Mauclair, F. Garrelie, R. Stoian, J.-P. Colombier, High-frequency periodic patterns driven by non-radiative fields coupled with Marangoni convection instabilities on laser-excited metal surfaces. Acta Mater. 194, 93–105 (2020)

    Article  ADS  Google Scholar 

  199. S. Gräf, C. Kunz, S. Engel, T. Derrien, F. Müller, Femtosecond laser-induced periodic surface structures on fused silica: the impact of the initial substrate temperature. Materials 11, 1340 (2018)

    Article  ADS  Google Scholar 

  200. T. Otobe, M. Yamagiwa, J.-I. Iwata, K. Yabana, T. Nakatsukasa, G.F. Bertsch, First-principles electron dynamics simulation for optical breakdown of dielectrics under an intense laser field. Phys. Rev. B 77, 165104 (2008)

    Article  ADS  Google Scholar 

  201. F. Schlaepfer, M. Lucchini, S.A. Sato, M. Volkov, L. Kasmi, N. Hartmann, A. Rubio, L. Gallmann, U. Keller, Attosecond optical-field-enhanced carrier injection into the GaAs conduction band. Nat. Phys. 14, 560–564 (2018)

    Article  Google Scholar 

  202. J.M. Zuo, P. Blaha, K. Schwarz, The theoretical charge density of silicon: experimental testing of exchange and correlation potentials. J. Phys.: Condens. Matter 9, 7541–7561 (1997)

    Google Scholar 

  203. N.T. Maitra, K. Burke, C. Woodward, Memory in time-dependent density functional theory. Phys. Rev. Lett. 89, 023002 (2002)

    Article  ADS  Google Scholar 

  204. P. Hohenberg, W. Kohn, Inhomogeneous electron gas. Phys. Rev. 136, B864 (1964)

    Article  MathSciNet  ADS  Google Scholar 

  205. E. Runge, E.K.U. Gross, Density-functional theory for time-dependent systems. Phys. Rev. Lett. 52, 997–1000 (1984)

    Article  ADS  Google Scholar 

  206. C.A. Ullrich, Time-Dependent Density-Functional Theory: Concepts and Applications (Oxford University Press, Oxford, 2012)

    MATH  Google Scholar 

  207. C.A. Ullrich, Z.-H. Yang, A brief compendium of time-dependent density functional theory. Braz. J. Phys. 44, 154–188 (2014)

    Article  ADS  Google Scholar 

  208. M.J.T. Oliveira, F. Nogueira, Generating relativistic pseudo-potentials with explicit incorporation of semi-core states using APE, the atomic pseudo-potentials engine. Comput. Phys. Commun. 178, 524–534 (2008)

    Article  ADS  Google Scholar 

  209. M.A.L. Marques, M.J.T. Oliveira, T. Burnus, Libxc: a library of exchange and correlation functionals for density functional theory. Comput. Phys. Commun. 183, 2272–2281 (2012)

    Article  ADS  Google Scholar 

  210. G. Stefanucci, R.V. Leeuwen, Nonequilibrium Many-body Theory of Quantum Systems: A Modern Introduction (Cambridge University Press, Cambridge, 2013)

    Book  MATH  Google Scholar 

  211. C. Cohen-Tannoudji, J. Dupont-Roc, G. Grynberg, Photons and Atoms: Introduction to Quantum Electrodynamics (Wiley, New York, 1997)

    Book  Google Scholar 

  212. G. Ernotte, T.J. Hammond, M. Taucer, A gauge-invariant formulation of interband and intraband currents in solids. Phys. Rev. B 98, 235202 (2018)

    Article  ADS  Google Scholar 

  213. H. Deng, W. Guo, H. Gao, L. Li, X. Yuan, W. Zheng, X. Zu, A numerical approach for femtosecond laser-induced photoionization in solids and its application. J. Opt. 21, 075501 (2019)

    Article  ADS  Google Scholar 

  214. J.-P. Colombier, A. Rudenko, E. Silaeva, H. Zhang, X. Sedao, E. Bévillon, S. Reynaud, C. Maurice, F. Pigeon, F. Garrelie, R. Stoian, Mixing periodic topographies and structural patterns on silicon surfaces mediated by ultrafast photoexcited charge carriers. Phys. Rev. Res. 2, 043080 (2020)

    Article  Google Scholar 

  215. C. Sarpe, J. Köhler, T. Winkler, M. Wollenhaupt, T. Baumert, Real time observation of transient electron density in water irradiated with tailored femtosecond laser pulses. New J. Phys. 14, 075021 (2012)

    Article  ADS  Google Scholar 

  216. M. Lebugle, O. Utéza, M. Sentis, N. Sanner, High temporal resolution and calibration in pump-probe experiments characterizing femtosecond laser-dielectrics interaction. Appl. Phys. A 120, 455–461 (2015)

    Article  ADS  Google Scholar 

  217. K.J. Wædegaard, D.B. Sandkamm, A. Mouskeftaras, S. Guizard, P. Balling, Probing ultrashort-pulse laser excitation of sapphire: from the initial carrier creation to material ablation. Europhys. Lett. 105, 47001 (2014)

    Article  ADS  Google Scholar 

  218. P. Jürgens, B. Liewehr, B. Kruse, C. Peltz, T. Witting, A. Husakou, A. Rouzee, M. Ivanov, T. Fennel, M.J.J. Vrakking, A. Mermillod-Blondin, Characterization of laser-induced ionization dynamics in solid dielectrics. ACS Photon. 9, 233–240 (2022)

    Article  Google Scholar 

  219. U. De Giovannini, H. Hübener, A. Rubio, Monitoring electron-photon dressing in WSe2. Nano Lett. 16, 7993–7998 (2016)

    Article  ADS  Google Scholar 

  220. E.J. Sie, J.W. McIver, Y.-H. Lee, L. Fu, J. Kong, N. Gedik, Valley-selective optical Stark effect in monolayer WS2. Nat. Mater. 14, 290–294 (2014)

    Article  ADS  Google Scholar 

  221. F. Mahmood, C.-K. Chan, Z. Alpichshev, D. Gardner, Y. Lee, P.A. Lee, N. Gedik, Selective scattering between Floquet-Bloch and Volkov states in a topological insulator. Nat. Phys. 12, 306–310 (2016)

    Article  Google Scholar 

  222. T. Winkler, L. Haahr-Lillevang, C. Sarpe, B. Zielinski, N. Götte, A. Senftleben, P. Balling, T. Baumert, Laser amplification in excited dielectrics. Nat. Phys. 14, 74–79 (2017)

    Article  Google Scholar 

  223. E. Smetanina, P. González de Alaiza Martínez, I. Thiele, B. Chimier, A. Bourgeade, G. Duchateau, Optical Bloch modeling of femtosecond-laser-induced electron dynamics in dielectrics. Phys. Rev. E 101, 063206 (2020)

    Google Scholar 

  224. T. Apostolova, B. Obreshkov, Sub-cycle dynamics of electron-hole pairs and high-harmonic generation in bulk diamond subjected to intense femtosecond laser pulse. Opt. Quantum. Electron. 50, 1–18 (2018)

    Article  Google Scholar 

  225. A. Zheltikov, Laser-induced tunneling, the Kapitza effective potential, and the limits of perturbative nonlinear optics. Opt. Express 27, 8246 (2019)

    Article  ADS  Google Scholar 

  226. H. Zhang, C. Li, E. Bevillon, G. Cheng, J.-P. Colombier, R. Stoian, Ultrafast destructuring of laser-irradiated tungsten: thermal or nonthermal process. Phys. Rev. B 94, 224103 (2016)

    Article  ADS  Google Scholar 

  227. A. Blumenstein, E.S. Zijlstra, D.S. Ivanov, S.T. Weber, T. Zier, F. Kleinwort, B. Rethfeld, J. Ihlemann, P. Simon, M.E. Garcia, Transient optics of gold during laser irradiation: from first principles to experiment. Phys. Rev. B 101, 165140 (2020)

    Article  ADS  Google Scholar 

  228. E. Bévillon, J. Colombier, V. Recoules, R. Stoian, First-principles calculations of heat capacities of ultrafast laser-excited electrons in metals. Appl. Surf. Sci. 336, 79–84 (2015)

    Article  ADS  Google Scholar 

  229. K. Glantschnig, C. Ambrosch-Draxl, Relativistic effects on the linear optical properties of Au, Pt, Pb and W. New J. Phys. 12, 103048 (2010)

    Article  Google Scholar 

  230. S.A. Sato, Y. Shinohara, T. Otobe, K. Yabana, Dielectric response of laser-excited silicon at finite electron temperature. Phys. Rev. B 90, 174303 (2014)

    Article  ADS  Google Scholar 

  231. M. Volkov, S.A. Sato, F. Schlaepfer, L. Kasmi, N. Hartmann, M. Lucchini, L. Gallmann, A. Rubio, U. Keller, Attosecond screening dynamics mediated by electron localization in transition metals. Nat. Phys. 15, 1145–1149 (2019)

    Article  Google Scholar 

  232. T. Zier, E.S. Zijlstra, M.E. Garcia, Quasimomentum-space image for ultrafast melting of silicon. Phys. Rev. Lett. 116, 153901 (2016)

    Article  ADS  Google Scholar 

  233. A. Yamada, K. Yabana, Modulation of probe signal in coherent phonon detection revisited: analytical and first-principles computational analyses. Phys. Rev. B 101, 214313 (2020)

    Article  ADS  Google Scholar 

  234. F.G. Eich, F. Agostini, The adiabatic limit of the exact factorization of the electron-nuclear wave function. J. Chem. Phys. 145, 054110 (2016)

    Article  ADS  Google Scholar 

  235. N.M. Hoffmann, H. Appel, A. Rubio, N.T. Maitra, Light-matter interactions via the exact factorization approach. Eur. Phys. J. B 91, 180 (2018)

    Article  ADS  Google Scholar 

  236. R. Requist, C.R. Proetto, E.K.U. Gross, Exact factorization-based density functional theory of electron-phonon systems. Phys. Rev. B 99, 165136 (2019)

    Article  ADS  Google Scholar 

  237. B. Bauerhenne, T. Zier, M.E. Garcia, Ultrafast Quantum Processes at the Nanoscale: Insights from Modelling (Springer, Berlin, 2022)

    Google Scholar 

  238. C.M. Bustamante, T.N. Todorov, C.G. Sánchez, A. Horsfield, D.A. Scherlis, A simple approximation to the electron-phonon interaction in population dynamics. J. Chem. Phys. 153, 234108 (2020)

    Article  ADS  Google Scholar 

  239. H.-Y. Chen, D. Sangalli, M. Bernardi, Exciton-phonon interaction and relaxation times from first principles. Phys. Rev. Lett. 125, 107401 (2020)

    Article  ADS  Google Scholar 

  240. P. Martinez, B. Rosenzweig, N.M. Hoffmann, L. Lacombe, N.T. Maitra, Case studies of the time-dependent potential energy surface for dynamics in cavities. J. Chem. Phys. 154, 014102 (2020)

    Article  ADS  Google Scholar 

  241. M.V. Shugaev, I. Gnilitskyi, N.M. Bulgakova, L.V. Zhigilei, Mechanism of single-pulse ablative generation of laser-induced periodic surface structures. Phys. Rev. B 96, 205429 (2017)

    Article  ADS  Google Scholar 

  242. C.-Y. Shih, I. Gnilitskyi, M.V. Shugaev, E. Skoulas, E. Stratakis, L.V. Zhigilei, Effect of a liquid environment on single-pulse generation of laser induced periodic surface structures and nanoparticles. Nanoscale 12, 7674–7687 (2020)

    Article  Google Scholar 

  243. B. Bauerhenne, V.P. Lipp, T. Zier, E.S. Zijlstra, M.E. Garcia, Self-learning method for construction of analytical interatomic potentials to describe laser-excited materials. Phys. Rev. Lett. 124, 085501 (2020)

    Article  ADS  Google Scholar 

  244. P.P. Pronko, S.K. Dutta, J. Squier, J.V. Rudd, D. Du, G. Mourou, Machining of sub-micron holes using a femtosecond laser at 800 nm. Opt. Commun. 114, 106–110 (1995)

    Article  ADS  Google Scholar 

  245. A.P. Joglekar, H.-H. Liu, E. Meyhöfer, G. Mourou, A.J. Hunt, Optics at critical intensity: applications to nanomorphing. Proc. Natl. Acad. Sci. U. S.A. 101, 5856–5861 (2004)

    Google Scholar 

  246. B.K.A. Ngoi, K. Venkatakrishnan, B. Tan, N.R. Sivakumar, The effect of Rowland Ghost on sub-micronmachining using femtosecond pulsed laser. Opt. Express 8, 492–496 (2001)

    Article  ADS  Google Scholar 

  247. A.P. Joglekar, H.-H. Liu, G.J. Spooner, E. Meyhöfer, G. Mourou, A.J. Hunt, A study of the deterministic character of optical damage by femtosecond laser pulses and applications to nanomachining. Appl. Phys. B 77, 25–30 (2003)

    Article  Google Scholar 

  248. F. Caballero-Lucas, C. Florian, J.M. Fernández-Pradas, J.L. Morenza, P. Serra, Beam waist position study for surface modification of polymethyl-methacrylate with femtosecond laser pulses. Appl. Surf. Sci. 374, 353–358 (2016)

    Article  ADS  Google Scholar 

  249. R. Stoian, J.-P. Colombier, Advances in ultrafast laser structuring of materials at the nanoscale. Nanophotonics 9, 4665–4688 (2020)

    Article  Google Scholar 

  250. T. Uenohara, Y. Takaya, Y. Mizutani, Laser micro machining beyond the diffraction limit using a photonic nanojet. CIRP Ann. 66, 491–494 (2017)

    Article  Google Scholar 

  251. F. Fraggelakis, G. Mincuzzi, J. Lopez, I. Manek-Hónninger, R. Kling, Controlling 2D laser nano structuring over large area with double femtosecond pulses. Appl. Surf. Sci. 470, 677–686 (2019)

    Article  ADS  Google Scholar 

  252. Y. Nakata, Y. Matsuba, N. Miyanaga, Sub-micron period metal lattices fabricated by interfering ultraviolet femtosecond laser processing. Appl. Phys. A 122, 532 (2016)

    Article  ADS  Google Scholar 

  253. Y. Nakata, E. Hayashi, K. Tsubakimoto, N. Miyanaga, A. Narazaki, T. Shoji, Y. Tsuboi, Nanodot array deposition via single shot laser interference pattern using laser-induced forward transfer. Int. J. Extreme Manuf. 2, 025101 (2020)

    Article  Google Scholar 

  254. R. Stoian, M. Bhuyan, G. Cheng, G. Zhang, R. Meyer, F. Courvoisier, Ultrafast Bessel beams: advanced tools for laser materials processing. Adv. Opt. Technol. 7, 165–174 (2018)

    Article  ADS  Google Scholar 

  255. J.-H. Yoo, J.B. In, C. Zheng, I. Sakellari, R.N. Raman, M.J. Matthews, S. Elhadj, C.P. Grigoropoulos, Directed dewetting of amorphous silicon film by a donut-shaped laser pulse. Nanotechnology 26, 165303 (2015)

    Article  ADS  Google Scholar 

  256. K. Toyoda, F. Takahashi, S. Takizawa, Y. Tokizane, K. Miyamoto, R. Morita, T. Omatsu, Transfer of light helicity to nanostructures. Phys. Rev. Lett. 110, 143603 (2013)

    Article  ADS  Google Scholar 

  257. L. Englert, B. Rethfeld, L. Haag, M. Wollenhaupt, C. Sarpe-Tudoran, T. Baumert, Control of ionization processes in high band gap materials via tailored femtosecond pulses. Opt. Express 15, 17855–17862 (2007)

    Article  ADS  Google Scholar 

  258. Y. Hayasaki, S. Hasegawa, H. Zhang, Spatial beam shaping with a liquid-crystal spatial light modulator, in Ultrafast Laser Nanostructuring—The Pursuit of Extreme Scales, ed. by R. Stoian, J. Bonse, Chapter 15 (Springer, Berlin, 2022)

    Google Scholar 

  259. F. Courvoisier, Non-standard light for ultrafast laser micro- and nano-structuring, in Ultrafast Laser Nanostructuring—The Pursuit of Extreme Scales, ed. by R. Stoian, J. Bonse. Chapter 16 (Springer, Berlin, 2022)

    Google Scholar 

  260. P.G. Kazansky, W. Yang, E. Bricchi, J. Bovatsek, A. Arai, Y. Shimotsuma, K. Miura, K. Hirao, “Quill” writing with ultrashort light pulses in transparent materials. Appl. Phys. Lett. 90, 151120 (2007)

    Article  ADS  Google Scholar 

  261. D.N. Vitek, E. Block, Y. Bellouard, D. E. Adams, S. Backus, D. Kleinfeld, C.G. Durfee, J.A. Squier, Spatio-temporally focused femtosecond laser pulses for nonreciprocal writing in optically transparent materials. Opt. Express 18, 24673–24678 (2010)

    Article  ADS  Google Scholar 

  262. H. Song, Y. Dai, J. Song, H. Ma, X. Yan, G. Ma, Femtosecond laser-induced structural difference in fused silica with a non-reciprocal writing process. Appl. Phys. A 123, 255 (2017)

    Article  ADS  Google Scholar 

  263. S. Akturk, X. Gu, P. Gabolde, R. Trebino, The general theory of first-order spatio-temporal distortions of gaussian pulses and beams, Opt. Express 13, 8642–8661 (2005)

    Article  ADS  Google Scholar 

  264. S. Akturk, X. Gu, P. Bowlan, R. Trebino, Spatio-temporal couplings in ultrashort laser pulses. J. Opt. 12, 093001 (2010)

    Article  ADS  Google Scholar 

  265. J.A. Wheeler, A. Borot, S.H. Monchocé, Vincenti, A. Ricci, A. Malvache, R. Lopez-Martens, F. Quéré, Attosecond lighthouses from plasma mirrors. Nat. Photon. 6, 829–833 (2012)

    Google Scholar 

  266. J.A. Fülöp, J. Hebling, Applications of tilted-pulse-front excitation, in Recent Optical and Photonic Technologies, ed. by K.Y. Kim (IntechOpen, 2010), pp. 207–230

    Google Scholar 

  267. A. Popp, J. Vieira, J. Osterhoff, Z. Major, R. Hörlein, M. Fuchs, R. Weingartner, T.P. Rowlands-Rees, M. Marti, R.A. Fonseca, S.F. Martins, L.O. Silva, S.M. Hooker, F. Krausz, F. Grüner, S. Karsch, All-optical steering of laser-wakefield-accelerated electron beams. Phys. Rev. Lett. 105, 215001 (2010)

    Article  ADS  Google Scholar 

  268. R. Kammel, R. Ackermann, J. Thomas, J. Götte, S. Skupin, A. Tünnermann, S. Nolte, Enhancing precision in fs-laser material processing by simultaneous spatial and temporal focusing. Light: Sci. Appl. 3, e169 (2014)

    Article  ADS  Google Scholar 

  269. V.P. Zhukov, S. Akturk, N.M. Bulgakova, Asymmetric interactions induced by spatio-temporal couplings of femtosecond laser pulses in transparent media. J. Opt. Soc. Am. B 36, 1556–1564 (2019)

    Article  ADS  Google Scholar 

  270. Y. Li, J. Song, Q. Zhai, W. Yin, X. Tang, Y. Dai, Effect of wavefront rotation on the photoionization process by ultrafast laser spatiotemporal focusing. J. Opt. Soc. Am. B 38, 1040–1047 (2021)

    Article  ADS  Google Scholar 

  271. T.Q. Jia, H.X. Chen, M. Huang, F.L. Zhao, J.R. Qiu, R.X. Li, Z.Z. Xu, X.K. Xe, J. Zhang, H. Kuroda, Formation of nanogratings on the surface of a ZnSe crystal irradiated by femtosecond laser pulses. Phys. Rev. B 72, 125429 (2005)

    Article  ADS  Google Scholar 

  272. M. Sakamoto, T. Tachikawa, M. Fujitsuka, T. Majama, Two-color two-laser fabrication of gold nanoparticles in a PVA film. Chem. Phys. Lett. 420, 90–94 (2006)

    Article  ADS  Google Scholar 

  273. P.K. Diwakar, S.S. Harilal, J.R. Freeman, A. Hassanein, Role of laser pre-pulse wavelength and inter-pulse delay on signal enhancement in collinear double-pulse laser-induced breakdown spectroscopy, Spectrochim. Acta B: At. Spectrosc. 87, 65–73 (2013)

    Article  ADS  Google Scholar 

  274. K. Sugioka, T. Akane, K. Obata, K. Toyoda, K. Midorikawa, Multiwavelength excitation processing using F2 and KrF excimer lasers for precision microfabrication of hard materials. Appl. Surf. Sci. 197–198, 814–821 (2002)

    Article  ADS  Google Scholar 

  275. T. Asada, T. Tamaki, E. Nakazumi, M. Ohmura, K. Itoh, Laser-induced structural modifications inside glass using a femtosecond laser and a CO2 laser. J. Laser Micro Nanoeng. 9, 174–179 (2014)

    Article  Google Scholar 

  276. F.V. Potemkin, B.G. Bravy, Y.I. Bezsudnova, E.I. Mareev, V.M. Starostin, V.T. Platonenko, V.M. Gordienko, Overcritical plasma ignition and diagnostics from oncoming interaction of two color low energy tightly focused femtosecond laser pulses inside fused silica. Laser Phys. Lett. 13, 045402 (2016)

    Article  ADS  Google Scholar 

  277. N.M. Bulgakova, V.P. Zhukov, A.R. Collins, D. Rostohar, T.J.-Y. Derrien, T. Mocek, How to optimize ultrashort pulse laser interaction with glass surfaces in cutting regimes? Appl. Surf. Sci. 336, 364–374 (2015)

    Article  ADS  Google Scholar 

  278. N.M. Bulgakova, V.P. Zhukov, S.V. Sonina, Y.P. Meshcheryakov, Modification of transparent materials with ultrashort laser pulses: what is energetically and mechanically meaningful? J. Appl. Phys. 118, 233108 (2015)

    Article  ADS  Google Scholar 

  279. N.M. Bulgakova, V.P. Zhukov, J. Sladek, I. Mirza, A.V. Bulgakov, Dual wavelength laser excitation of bandgap materials: challenges for efficient energy coupling, in Conference on Lasers and Electro-Optics, OSA Technical Digest (Optical Society of America, 2020), p. STh1H.4

    Google Scholar 

  280. X. Sedao, T.J.-Y. Derrien, G.R.B.E. Romer, B. Pathiraj, A.J. Huis in ’t Veld, Parallel laser surface texturing by a simple transportable micro-sphere arrays. J. Appl. Phys. 112, 103111 (2012)

    Google Scholar 

  281. J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, P. Godignon, A. Zurutuza Elorza, N. Camara, F.J.G. de Abajo, R. Hillenbrand, F.H.L. Koppens, Optical nano-imaging of gate-tunable graphene plasmons. Nature 487 77–81 (2012)

    Article  ADS  Google Scholar 

  282. J. Bogdanowicz, M. Gilbert, N. Innocenti, S. Koelling, B. Vanderheyden, W. Vandervorst, Light absorption in conical silicon particles. Opt. Express 21, 3891–3896 (2013)

    Article  ADS  Google Scholar 

  283. S. Kim, J. Jin, Y.-J. Kim, I.-Y. Park, Y. Kim, S.-W. Kim, High-harmonic generation by resonant plasmon field enhancement. Nature 453, 757–760 (2008)

    Article  ADS  Google Scholar 

  284. I.-Y. Park, S. Kim, J. Choi, D.-H. Lee, Y.-J. Kim, M. F. Kling, M. I. Stockman, S.-W. Kim, Plasmonic generation of ultrashort extreme-ultraviolet light pulses. Nat. Photon. 5, 677–681 (2011)

    Article  ADS  Google Scholar 

  285. M. Birnbaum, Semiconductor surface damage produced by ruby lasers. J. Appl. Phys. 36, 3688 (1965)

    Article  MathSciNet  ADS  Google Scholar 

  286. J. Bonse, S. Höhm, S.V. Kirner, A. Rosenfeld, J. Krüger, Laser-induced periodic surface structures - a scientific evergreen. IEEE J. Sel. Topics Quantum Electron. 23, 9000615 (2017)

    Article  Google Scholar 

  287. J. Bonse, S. Gräf, Maxwell meets Marangoni-a review of theories on laser-induced periodic surface structures. Laser Photon. Rev. 14, 2000215 (2020)

    Article  ADS  Google Scholar 

  288. A. Rudenko, J.-P. Colombier, How light drives material periodic patterns down to the nanoscale, in Ultrafast Laser Nanostructuring—The Pursuit of Extreme Scales, ed. by R. Stoian, J. Bonse. Chapter 5 (Springer, Berlin, 2022)

    Google Scholar 

  289. B. Öktem, I. Pavlov, S. Ilday, H. Kalaycioglu, A. Rybak, S. Yavas, M. Erdogan, F.O. Ilday, Nonlinear laser lithography for indefinitely large-area nanostructuring with femtosecond pulses. Nat. Photon. 7, 897–901 (2013)

    Article  ADS  Google Scholar 

  290. A. Ruiz de la Cruz, R. Lahoz, J. Siegel, G.F. de la Fuente, J. Solis, High speed inscription of uniform, large-area laser-induced periodic surface structures in Cr films using a high repetition rate fs laser. Opt. Lett. 39, 2491 (2014)

    Article  ADS  Google Scholar 

  291. A. San-Blas, M. Martinez-Calderon, E. Granados, M. Gómez-Aranzadi, A. Rodríguez, S.M. Olaizola, LIPSS manufacturing with regularity control through laser wavefront curvature. Surf. Interfaces 25, 101205 (2021)

    Article  Google Scholar 

  292. B. Kim, H.K. Nam, J. Ryu, Y.-J. Kim, S.-W. Kim, Non-periodic nanoscale structuring of crystalline silicon surface by using ultrashort laser pulses. Appl. Surf. Sci. 565, 150595 (2021)

    Article  Google Scholar 

  293. A.M. Ozkan, Femtosecond laser-induced periodic structure writing on diamond crystals and microclusters. Appl. Phys. Lett. 75, 3716–3718 (1999)

    Article  ADS  Google Scholar 

  294. J. Bonse, H. Sturm, D. Schmidt, W. Kautek, Chemical, morphological and accumulation phenomena in ultrashort-pulse laser ablation of TiN in air. Appl. Phys. A 71, 657–665 (2000)

    Article  ADS  Google Scholar 

  295. J. Reif, F. Costache, M. Henyk, S.V. Pandelov, Ripples revisited—non-classical morphology at the bottom of femtosecond laser ablation craters in transparent dielectrics. Appl. Surf. Sci. 197–198, 891–895 (2002)

    Article  ADS  Google Scholar 

  296. A. Borowiec, H.K. Haugen, Subwavelength ripple formation on the surfaces of compound semiconductors irradiated with femtosecond laser pulses. Appl. Phys. Lett. 82, 4462–4464 (2003)

    Article  ADS  Google Scholar 

  297. Q. Wu, Y. Ma, R. Fang, Y. Liao, Q. Yu, X. Chen, K. Wang, Femtosecond laser-induced periodic surface structure on diamond film. Appl. Phys. Lett. 82, 1703 (2003)

    Article  ADS  Google Scholar 

  298. J. Bonse, S. Höhm, A. Rosenfeld, J. Krüger, Sub-100-nm laser-induced periodic surface structures upon irradiation of titanium by Ti-sapphire femtosecond laser pulses in air. Appl. Phys. A 110, 547–551 (2013)

    Article  ADS  Google Scholar 

  299. M. Huang, F. Zhao, Y. Cheng, N. Xu, Z. Xu, Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser. ACS Nano 3, 4062–4070 (2009)

    Article  Google Scholar 

  300. M. Huang, F. Zhao, Y. Cheng, N. Xu, Z. Xu, Mechanisms of ultrafast laser-induced deep-subwavelength gratings on graphite and diamond. Phys. Rev. B 79, 125436 (2009)

    Article  ADS  Google Scholar 

  301. J.Z.P. Skolski, G.R.B.E. Römer, J.V. Obona, A.J. Huis in ’t Veld, Modeling laser-induced periodic surface structures: finite-difference time-domain feedback simulations. J. Appl. Phys. 115, 103102 (2014)

    Google Scholar 

  302. M. Huang, F. Zhao, Y. Cheng, Z. Xu, Effects of the amorphous layer on laser-induced subwavelength structures on carbon allotropes. Opt. Lett. 37, 677 (2012)

    Article  ADS  Google Scholar 

  303. C. Wang, H. Huo, M. Johnson, M. Shen, E. Mazur, The thresholds of surface nano-/micro-morphology modifications with femtosecond laser pulse irradiations. Nanotechnology 21, 075304 (2010)

    Article  ADS  Google Scholar 

  304. G. Obara, H. Shimizu, T. Enami, E. Mazur, M. Terakawa, M. Obara, Growth of high spatial frequency periodic ripple structures on SiC crystal surfaces irradiated with successive femtosecond laser pulses. Opt. Express 21, 26323 (2013)

    Article  ADS  Google Scholar 

  305. A. Sarracino, A.R. Ansari, B. Torralva, S. Yalisove, Sub-100 nm high spatial frequency periodic structures driven by femtosecond laser induced desorption in GaAs. Appl. Phys. Lett. 118, 242106 (2021)

    Article  ADS  Google Scholar 

  306. A. Rudenko, C. Mauclair, F. Garrelie, R. Stoian, J.-P. Colombier, Amplification and regulation of periodic nanostructures in multipulse ultrashort laser-induced surface evolution by electromagnetic-hydrodynamic simulations. Phys. Rev. B 99, 235412 (2019)

    Article  ADS  Google Scholar 

  307. A.V. Dostovalov, V.P. Korolkov, K.A. Okotrub, K.A. Bronnikov, S.A. Babin, Oxide composition and period variation of thermochemical LIPSS on chromium films with different thickness. Opt. Express 26, 7712 (2018)

    Article  ADS  Google Scholar 

  308. G.A. Martsinovskii, G.D. Shandybina, D.S. Smirnov, S.V. Zabotnov, L.A. Golovan, V.Y. Timoshenko, P.K. Kashkarov, Ultrashort excitations of surface polaritons and waveguide modes in semiconductors. Opt. Spectrosc. 105, 67–72 (2008)

    Article  ADS  Google Scholar 

  309. A. Norrman, T. Setälä, A.T. Friberg, Surface-plasmon polariton solutions at a lossy slab in a symmetric surrounding. Opt. Express 22, 4628 (2014)

    Article  ADS  Google Scholar 

  310. H. Xie, B. Zhao, J. Cheng, S.K. Chamoli, T. Zou, W. Xin, J. Yang, Super-regular femtosecond laser nanolithography based on dual-interface plasmons coupling. Nanophotonics 10, 3831–3842 (2021)

    Article  Google Scholar 

Download references

Acknowledgements

The research of T. J.-Y. D., Y. L. and N. M. B. is financed by the European Regional Development Fund and the state budget of the Czech Republic (project BIATRI, No. CZ.02.1.01/0.0/0.0/15_003/0000445; project HiLASE CoE, No. CZ.02.1.01/0.0/0.0/15_006/0000674).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadezhda M. Bulgakova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Derrien, T.J.Y., Levy, Y., Bulgakova, N.M. (2023). Insights into Laser-Matter Interaction from Inside: Wealth of Processes, Multiplicity of Mechanisms and Possible Roadmaps for Energy Localization. In: Stoian, R., Bonse, J. (eds) Ultrafast Laser Nanostructuring. Springer Series in Optical Sciences, vol 239. Springer, Cham. https://doi.org/10.1007/978-3-031-14752-4_1

Download citation

Publish with us

Policies and ethics