Skip to main content

On-Line Monitoring of In-Vitro Application of PWJ for Bone Cement Disintegration

  • Conference paper
  • First Online:
Advances in Manufacturing Engineering and Materials II (ICMEM 2021)

Part of the book series: Lecture Notes in Mechanical Engineering ((LNME))

Included in the following conference series:

  • 523 Accesses

Abstract

The use of pulsating water jet as a minimal invasive method for disintegration of bone cement requires optimal determination of its machine settings which effects the erosion depth. The volume of fluid required and the distance of the nozzle from the bone cement surface during its disintegration are one of the important machine settings for its in-vivo applications. Moreover, controlling of the technology during its action without effecting the phenomenon responsible for erosion is a challenging task. Therefore, in this study influence of variation of the nozzle diameter and standoff distance on the disintegration depth have been studied. Acoustic emission signals in form of acceleration values, recorded during the disintegration process are analyzed and correlated with the achieved groove depth trends. The results showed similar trend of acceleration values and disintegration depth when varying the nozzle diameter or standoff distance. Both the acceleration and disintegration depth, increases with an increase in the standoff distance till an optimal limit and decreases after it. Also, with the increase in the nozzle diameter, disintegration depth and acceleration value increase due to increase in the water flow rate. The analogy of recorded acoustic emission signals with the depth values achieved during the process can be used in further studies for controlling of the water jet process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hloch, S., Foldyna, J., Sitek, L., Zeleňák, M., Hlaváček, P., Hvizdoš, P., Kľoc, J., Monka, P., Monková, K., Kozak, D., Magurová, D.: Disintegration of bone cement by continuous and pulsating water jet. Tech. Gaz. 20, 593–598 (2013)

    Google Scholar 

  2. Lee, C.: The mechanical properties of PMMA bone cement. In: The Well-Cemented Total Hip Arthroplasty: Theory and Practice, pp. 60–66. Springer, Heidelberg (2005). https://doi.org/10.1007/3-540-28924-0_6

  3. Deb, S., Koller, G.: Acrylic bone cement: genesis and evolution. In: Orthopaedic Bone Cements, pp. 167–182 (2008)

    Google Scholar 

  4. Reina, N., Delaunay, C., Chiron, P., Ramdane, N., Hamadouche, M.: Infection as a cause of primary total hip arthroplasty revision and its predictive factors. Orthop. Traumatol. Surg. Res. 99, 555–561 (2013)

    Article  Google Scholar 

  5. Marcos, L., Buttaro, M., Comba, F., Piccaluga, F.: Femoral cement within cement technique in carefully selected aseptic revision arthroplasties. Int. Orthop. 33, 633–637 (2009). https://doi.org/10.1007/s00264-008-0516-0

    Article  Google Scholar 

  6. Ulrich, S.D., Seyler, T.M., Bennett, D., Delanois, R.E., Saleh, K.J., Thongtrangan, I., Kuskowski, M., Cheng, E.Y., Sharkey, P.F., Parvizi, J., Stiehl, J.B., Mont, M.A.: Total hip arthroplasties: what are the reasons for revision? Int. Orthop. 32, 597–604 (2008). https://doi.org/10.1007/s00264-007-0364-3

    Article  Google Scholar 

  7. Kavanagh, B.F., Ilstrup, D.M., Fitzgerald, J.R.H.: Revision total hip arthroplasty. J. Bone Joint Surg. Am. 67, 517–526 (1985)

    Article  Google Scholar 

  8. Masri, B.A., Mitchell, P.A., Duncan, C.P.: Removal of solidly fixed implants during revision hip and knee arthroplasty. JAAOS-J. Am. Acad. Orthop. Surg. 13, 18–27 (2005)

    Article  Google Scholar 

  9. Lombardi, A.V: Cement removal in revision total hip arthroplasty (1992). https://www.ncbi.nlm.nih.gov/pubmed/19997818. https://doi.org/10.3109/17453679209154735

  10. Zweymüller, K., Steindl, M., Melmer, T.: Anterior windowing of the femur diaphysis for cement removal in revision surgery. Clin. Orthop. Relat. Res. 441, 227–236 (2005). https://doi.org/10.1097/01.blo.0000192042.05584.9c

    Article  Google Scholar 

  11. Megas, P., Georgiou, C.S., Panagopoulos, A., Kouzelis, A.: Removal of well-fixed components in femoral revision arthroplasty with controlled segmentation of the proximal femur. J. Orthop. Surg. Res. 9, 137 (2014). https://doi.org/10.1186/s13018-014-0137-9

    Article  Google Scholar 

  12. Chen, W.-M., McAuley, J.P., C Anderson Engh, J., Robert H Hopper, J., Engh, C.A.: Extended slide trochanteric osteotomy for revision total hip arthroplasty. J. Bone Jt. Surg. 82-A, 5 (2000)

    Google Scholar 

  13. Keeling, P., Prendergast, P.J., Lennon, A.B., Kenny, P.J.: Cement-in-cement revision hip arthroplasty: an analysis of clinical and biomechanical literature. Arch. Orthop. Trauma Surg. 128, 1193–1199 (2008)

    Article  Google Scholar 

  14. Li, P.L.S., Ingle, P.J., Dowell, J.K.: Cement-within-cement revision hip arthroplasty; should it be done? J. Bone Jt. Surg. Br. 78, 809–811 (1996)

    Article  Google Scholar 

  15. Weinstein, J.N., Oster, D.M., Park, J.B., Park, S.H., Loening, S.: The effect of the extracorporeal shock wave lithotriptor on the bone-cement interface in dogs. Clin. Orthop. Relat. Res. 235, 261–267 (1988)

    Google Scholar 

  16. Porsch, M., Schmidt, J.: Cement removal with an endoscopically controlled ballistically driven chiselling system. Arch. Orthop. Trauma Surg. 121(5), 274–277 (2001). https://doi.org/10.1007/s004020000233

    Article  Google Scholar 

  17. Goldberg, S.H., Cohen, M.S., Young, M., Bradnock, B.: Thermal tissue damage caused by ultrasonic cement removal from the humerus. J. Bone Jt. Surg. - Ser. A. 87, 583–591 (2005). https://doi.org/10.2106/JBJS.D.01966

  18. Gardiner, R., Hozack, W.J., Nelson, C., Keating, E.M.: Revision total hip arthroplasty using ultrasonically driven tools. J. Arthroplasty. 8, 517–521 (1993)

    Article  Google Scholar 

  19. Zimmer, M., Klöbl, R., De Toma, G., Jansson, V., Refior, H.J., Heimkes, B., Kühne, J.-H.: Bone-cement removal with the excimer laser in revision arthroplasty. Arch. Orthop. Trauma Surg. 112, 15–17 (1992)

    Article  Google Scholar 

  20. Scholz, C., Matthes, M., Kar, H., Boenick, U.: Die Knochenzemententfernung mit dem laser-bone cement removal with the laser. Biomed. Tech. Eng. 36, 120–128 (1991)

    Article  Google Scholar 

  21. Sherk, H.H., Lane, G., Rhodes, A., Black, J.: Carbon dioxide laser removal of polymethylmethacrylate. Clin. Orthop. Relat. Res. 67–71 (1995)

    Google Scholar 

  22. Hreha, P., Hloch, S., Magurovd, D., Valicek, J., Kozak, D., Harnicdrovd, M., Rakin, M.: Water jet technology used in medicine. Teh. Vjesn. 17, 237–240 (2010)

    Google Scholar 

  23. Honl, M., Rentzsch, R., Müller, G., Brandt, C., Bluhm, A., Hille, E., Louis, H., Morlock, M.: The use of water-jetting technology in prostheses revision surgery - First results of parameter studies on bone and bone cement. J. Biomed. Mater. Res. 53, 781–790 (2000). https://doi.org/10.1002/1097-4636(2000)53:6%3c781::AID-JBM20%3e3.0.CO;2-G

    Article  Google Scholar 

  24. Schmolke, S., Pude, F., Kirsch, L., Honl, M., Schwieger, K., Krömer, S.: Wärmeentwicklung bei der Wasser-Abrasivstrahl-Osteotomie/Temperature Measurements During Abrasive Water Jet Osteotomy. Biomed. Tech. Eng. 49, 18–21 (2004)

    Article  Google Scholar 

  25. Honl, M., Dierk, O., Küster, J.R., Müller, G., Müller, V., Hille, E., Morlock, M.: Die Wasserstrahldiskotomie im mikroinvasiven Zugang-In-vitro-Testung und erste klinische Aspekte eines neuen Verfahrens. Z. Orthop. Ihre Grenzgeb. 139, 45–51 (2001)

    Article  Google Scholar 

  26. Kraaij, G., Tuijthof, G.J.M., Dankelman, J., Nelissen, R.G.H.H., Valstar, E.R.: Waterjet cutting of periprosthetic interface tissue in loosened hip prostheses: an in vitro feasibility study. Med. Eng. Phys. 37, 245–250 (2015). https://doi.org/10.1016/j.medengphy.2014.12.009

    Article  Google Scholar 

  27. Schwieger, K., Carrero, V., Rentzsch, R., Becker, A., Bishop, N., Hille, E., Louis, H., Morlock, M., Honl, M.: Abrasive water jet cutting as a new procedure for cutting cancellous bone—in vitro testing in comparison with the oscillating saw. J. Biomed. Mater. Res. Part B Appl. Biomater. 71, 223–228 (2004)

    Google Scholar 

  28. Foldyna, J., Svehla, B.: Method of generation of pressure pulsations and apparatus for implementation of this method (2010)

    Google Scholar 

  29. Nag, A., Hloch, S., Dixit, A.R., Cuha, D.: Investigation on pulsating liquid jet with physiological saline on aluminium surface. In: Advances in Manufacturing Engineering and Materials, pp. 63–71. Springer (2019)

    Google Scholar 

  30. Nag, A., Hloch, S., Čuha, D., Dixit, A.R., Tozan, H., Petrů, J., Hromasová, M., Müller, M.: Acoustic chamber length performance analysis in ultrasonic pulsating water jet erosion of ductile material. J. Manuf. Process. 47, 347–356 (2019)

    Article  Google Scholar 

  31. Srivastava, M., Hloch, S., Tripathi, R., Kozak, D., Chattopadhyaya, S., Dixit, A.R., Foldyna, J., Hvizdos, P., Fides, M., Adamcik, P.: Ultrasonically generated pulsed water jet peening of austenitic stainless-steel surfaces. J. Manuf. Process. 32, 455–468 (2018). https://doi.org/10.1016/j.jmapro.2018.03.016

  32. Hloch, S., Adamčík, P., Nag, A., Srivastava, M., Čuha, D., Müller, M., Hromasová, M., Klich, J.: Hydrodynamic ductile erosion of aluminium by a pulsed water jet moving in an inclined trajectory. Wear 428–429, 178–192 (2019). https://doi.org/10.1016/j.wear.2019.03.015

    Article  Google Scholar 

  33. Hloch, S., Nag, A., Pude, F., Foldyna, J., Zeleňák, M.: On-line measurement and monitoring of pulsating saline and water jet disintegration of bone cement with frequency 20 kHz. Measurement. 147, 106828 (2019)

    Article  Google Scholar 

  34. Hloch, S., Ruggiero, A.: Online monitoring and analysis of hydroabrasive cutting by vibration. Adv. Mech. Eng. 5, 894561 (2013)

    Article  Google Scholar 

  35. Product Brochure | C-ment | Leader Biomedical. https://www.leaderbiomedical.com/brochure/c-ment-pmma-bone-cement/. Accessed 01 Feb 2020

  36. Hloch, S., Srivastava, M., Nag, A., Muller, M., Hromasová, M., Svobodová, J., Kruml, T., Chlupová, A.: Effect of pressure of pulsating water jet moving along stair trajectory on erosion depth, surface morphology and microhardness. Wear. 452, 203278 (2020)

    Article  Google Scholar 

Download references

Acknowledgment

This study was supported by the Slovak Research and Development Agency under Contract No. APVV-17-0490.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akash Nag .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nag, A., Hloch, S., Dixit, A.R. (2021). On-Line Monitoring of In-Vitro Application of PWJ for Bone Cement Disintegration. In: Hloch, S., Klichová, D., Pude, F., Krolczyk, G.M., Chattopadhyaya, S. (eds) Advances in Manufacturing Engineering and Materials II. ICMEM 2021. Lecture Notes in Mechanical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-71956-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-71956-2_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-71955-5

  • Online ISBN: 978-3-030-71956-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics