Skip to main content

Effect of Water Flow Rate on Operating Frequency and Power During Acoustic Chamber Tuning

  • Conference paper
  • First Online:
Advances in Manufacturing Engineering and Materials II (ICMEM 2021)

Part of the book series: Lecture Notes in Mechanical Engineering ((LNME))

Included in the following conference series:

Abstract

Tuning of an ultrasonic system for pulsating water jet technology for efficient power transmission is discussed in this paper. The efficiency of the ultrasonic transducer depends upon the stiffness of the water interacting with it. The stiffness of water depends upon the inlet volume flow rate inside the acoustic chamber controlled by supply pump pressure and diameter of the nozzle. The interactional effect of varying water stiffness and the sonotrode efficiency can be adjusted by varying the acoustic chamber length. It changes the space required by the standing waves inside the chamber to achieve optimal amplitude near the nozzle exit. Therefore, supply pressure of 20, 30 and 40 MPa, nozzle diameter of 0.3–1 mm and chamber length from 0 to 22 mm were used in this study to observe the change in the operating frequency and output power of the sonotrode. The results showed that at lower flow rate (<3.0 l/min), the optimal chamber length depends upon both supply pressure and nozzle diameter. However, for flow rate above 3.06 l/min, the achieved resonance frequency depends solely on volume flow rate. The optimal chamber lengths observed are 20 and 21 mm for flow rate ranging from 3.06 to 5.43 l/min and 5.88 to 12.01 l/min, respectively. These results can be used as quick settings of the system in the resonance regime for future experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kumar, J.: Ultrasonic machining—A comprehensive review. Mach. Sci. Technol. 17, 325–379 (2013)

    Article  Google Scholar 

  2. Thoe, T.B., Aspinwall, D.K., Wise, M.L.H.: Review on ultrasonic machining. Int. J. Mach. Tools Manuf. 38, 239–255 (1998)

    Article  Google Scholar 

  3. Singh, R.P., Singhal, S.: Rotary ultrasonic machining: a review. Mater. Manuf. Process. 31, 1795–1824 (2016)

    Article  Google Scholar 

  4. Singh, R., Khamba, J.S.: Ultrasonic machining of titanium and its alloys: a review. J. Mater. Process. Technol. 173, 125–135 (2006)

    Article  Google Scholar 

  5. Balamuth, L.: Mechanical impedance transformers in relation to ultrasonic machining. J. Acoust. Soc. Am. 26, 934 (1954)

    Article  Google Scholar 

  6. Yao, Z., Guo, Z.N., Zhang, Y.J., Deng, Y., Zhang, W.T.: Research on the frequency tracking in rotary ultrasonic machining. Proc. CIRP 6, 556–560 (2013)

    Article  Google Scholar 

  7. Sherrit, S., Badescu, M., Bao, X., Bar-Cohen, Y., Chang, Z.: Novel horn designs for power ultrasonics. In: IEEE Ultrasonics Symposium, pp. 2263–2266. IEEE (2004). https://doi.org/10.1109/ULTSYM.2004.1418291

  8. Upadhye, V., Agashe, S.: Effect of temperature and pressure variations on the resonant frequency of piezoelectric material. Meas. Control 49, 286–292 (2016)

    Article  Google Scholar 

  9. Shuyu, L.: Optimization of the performance of the sandwich piezoelectric ultrasonic transducer. J. Acoust. Soc. Am. 115, 182–186 (2004)

    Article  Google Scholar 

  10. Hirose, S., Aoyagi, M., Tomikawa, Y., Takahashi, S., Uchino, K.: High power characteristics at antiresonance frequency of piezoelectric transducers. Ultrasonics 34, 213–217 (1996)

    Article  Google Scholar 

  11. Arnold, F.J., Mühlen, S.S.: The resonance frequencies on mechanically pre-stressed ultrasonic piezotransducers. Ultrasonics 39, 1–5 (2001). https://doi.org/10.1016/S0041-624X(00)00047-0

    Article  Google Scholar 

  12. Cheney, M., Isaacson, D., Newell, J.C.: Electrical impedance tomography. SIAM Rev. 41, 85–101 (1999)

    Article  MathSciNet  Google Scholar 

  13. Davari, P., Ghasemi, N., Zare, F.: Power converters design and analysis for high power piezoelectric ultrasonic transducers. In: 2014 16th European Conference on Power Electronics and Applications. IEEE (2014). https://doi.org/10.1109/EPE.2014.6910986

  14. Hocheng, H., Kuo, K.L.: On-line tool wear monitoring during ultrasonic machining using tool resonance frequency. J. Mater. Process. Technol. 123, 80–84 (2002)

    Article  Google Scholar 

  15. Shchukin, D.G., Skorb, E., Belova, V., Moehwald, H.: Ultrasonic cavitation at solid surfaces. Adv. Mater. 23, 1922–1934 (2011)

    Article  Google Scholar 

  16. Hloch, S., Adamčík, P., Nag, A., Srivastava, M., Čuha, D., Müller, M., Hromasová, M., Klich, J.: Hydrodynamic ductile erosion of aluminium by a pulsed water jet moving in an inclined trajectory. Wear 428–429, 178–192 (2019). https://doi.org/10.1016/j.wear.2019.03.015

    Article  Google Scholar 

  17. Foldyna, J., Klich, J., Hlavacek, P., Zelenak, M., Scucka, J.: Erosion of metals by pulsating water jet. Teh. Vjesn. Gaz. 19, 381–386 (2012)

    Google Scholar 

  18. Raj, P., Hloch, S., Tripathi, R., Srivastava, M., Nag, A., Klichová, D., Klich, J., Hromasová, M., Muller, M., Miloslav, L., Chattopadhyaya, S., Adamcik, P.: Investigation of sandstone erosion by continuous and pulsed water jets. J. Manuf. Process. 42, 121–130 (2019). https://doi.org/10.1016/j.jmapro.2019.04.035

    Article  Google Scholar 

  19. Hloch, S., Srivastava, M., Nag, A., Muller, M., Hromasová, M., Svobodová, J., Kruml, T., Chlupová, A.: Effect of pressure of pulsating water jet moving along stair trajectory on erosion depth, surface morphology and microhardness. Wear 452–453, 203278 (2020)

    Article  Google Scholar 

  20. Chilibon, I.: Underwater flextensional piezoceramic sandwich transducer. Sens. Actuators A Phys. 100, 287–292 (2002)

    Article  Google Scholar 

  21. Wevers, M., Lafaut, J.-P., Baert, L., Chilibon, I.: Low-frequency ultrasonic piezoceramic sandwich transducer. Sens. Actuators A Phys. 122, 284–289 (2005)

    Article  Google Scholar 

  22. Hloch, S., Nag, A., Pude, F., Foldyna, J., Zeleňák, M.: On-line measurement and monitoring of pulsating saline and water jet disintegration of bone cement with frequency 20 kHz. Measurement 147, 106828 (2019)

    Article  Google Scholar 

  23. Nag, A., Hloch, S., Dixit, A.R., Cuha, D.: Investigation on pulsating liquid jet with physiological saline on aluminium surface. In: Advances in Manufacturing Engineering and Materials, pp. 63–71. Springer (2019). https://doi.org/10.1007/978-3-319-99353-9_8

  24. Nag, A., Hloch, S., Čuha, D., Dixit, A.R., Tozan, H., Petrů, J., Hromasová, M., Müller, M.: Acoustic chamber length performance analysis in ultrasonic pulsating water jet erosion of ductile material. J. Manuf. Process. 47, 347–356 (2019)

    Article  Google Scholar 

  25. Srivastava, M., Hloch, S., Gubeljak, N., Milkovic, M., Chattopadhyaya, S., Klich, J.: Surface integrity and residual stress analysis of pulsed water jet peened stainless steel surfaces. Measurement 143, 81–92 (2019)

    Article  Google Scholar 

Download references

Acknowledgement

This study was supported by the Slovak Research and Development Agency under Contract No. APVV-17-0490 and VEGA 1/0096/18.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akash Nag .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nag, A., Stolárik, G., Svehla, B., Hloch, S. (2021). Effect of Water Flow Rate on Operating Frequency and Power During Acoustic Chamber Tuning. In: Hloch, S., Klichová, D., Pude, F., Krolczyk, G.M., Chattopadhyaya, S. (eds) Advances in Manufacturing Engineering and Materials II. ICMEM 2021. Lecture Notes in Mechanical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-71956-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-71956-2_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-71955-5

  • Online ISBN: 978-3-030-71956-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics