Skip to main content

Effect of the Ultrasonically Enhanced Water Jet on Copper Surface Topography at a Low Traverse Speed

  • Conference paper
  • First Online:
Advances in Water Jetting (Water Jet 2019)

Abstract

The article describes the maximum erosion efficiency of an acoustically enhanced pulsating water jet on CW004A copper surface. The copper surface was disintegrated at a traverse speed v = 0.1 mm.s−1, water pressure of 39 MPa and circular nozzle diameter of 1.321 mm. The effect of the PWJ on the copper surface was evaluated based on a surface topography evaluation using an optical profilometry and a scanning electron microscopy analysis. In the experimental investigation, it was found that a low traverse speed rate has destructive effects on the material with significant weight and volume loss of the material. Surface topography was characterized by a formation of protrusions, depressions and craters. Subsurface material failure of up to 200 µm was detected.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zajac, J., Mital’, D., Radchenko, S., Kokuľa, P., Olexa, L., Cep, R.: Short-term testing of cutting materials using the method of interrupted cut. Oper. Diagn. Mach. Prod. Syst. Oper. States II 616, 236–243 (2014). https://doi.org/10.4028/www.scientific.net/AMM.616.236

    Article  Google Scholar 

  2. Liu, X.C., Liang, Z.W., Wen, G.L., Yuan, X.F.: Waterjet machining and research developments: a review. Int. J. Adv. Manuf. Technol. 102(5–8), 1257–1335 (2019). https://doi.org/10.1007/s00170-018-3094-3

    Article  Google Scholar 

  3. Hyland, C.W.L., Ouwejan, A.: Fatigue of reinforcing bars during hydro-demolition. In: 6th International Conference on fracture fatigue and wear (FFW), Journal of Physics Conference Series, IOP Publishing, vol. 843, article number 0102033 (2017). https://doi.org/10.1088/1742-6596/843/1/012033

  4. Perec, A., Pude, F., Grigoryev, A., Kaufeld, M., Wegener, K.: A study of wear on focusing tubes exposed to corundum-based abrasives in the waterjet cutting process. Int. J. Adv. Manuf. Technol. 104(5–8), 2415–2427 (2019). https://doi.org/10.1007/s00170-019-03971-0

    Article  Google Scholar 

  5. Molitoris, M., Pitel, J., Hosovsky, A., Tothova, M., Zidek, K.: A review of research on water jet with slurry injection. Procedia Engineering 2016(149), 333–339 (2016). https://doi.org/10.1016/j.proeng.2016.06.675. International Conference on Manufacturing Engineering and Materials, ICMEM

    Article  Google Scholar 

  6. Hreha, P., Radvanska, A., Hloch, S., Perzel, V., Krolczyk, G., Monkova, K.: Determination of vibration frequency depending on abrasive mass flow rate during abrasive water jet cutting. Int. J. Adv. Manuf. Technol. 77(1–4), 763–774 (2015). https://doi.org/10.1007/s00170-014-6497-9

    Article  Google Scholar 

  7. Pitel, J., Matiskova, D., Marasova, D.: A new approach to evaluation of the material cutting using the artificial neural networks. TEM J. Technol. Educ. Manag. Inform. 8(2), 325–332 (2019). https://doi.org/10.18421/TEM82-02

    Article  Google Scholar 

  8. Hloch, S., Hlavacek, J., Vasilko, K., et al.: Abrasive waterjet (AWJ) titanium tangential turning evaluation. Metalurgija 53(4), 537–540 (2017)

    Google Scholar 

  9. Sitek, L., Foldyna, J., Soucek, K.: Shaping of rock specimens for testing of uniaxial tensile strength by high speed abrasive water jet: First experience. In: Eurock 2005: Impact of Human Activity on the Geological Environment, 545–549. A A Balkema Publisher (2005)

    Google Scholar 

  10. Perec, A.: Investigation of limestone cutting efficiency by the abrasive water suspension jet. In: Lecture Notes in Mechanical Engineering, pp. 124–134. Springer (2019). https://doi.org/10.1007/978-3-319-99353-9_14

  11. Carach, J., Lehocka, D., Legutko, S., et al.: Surface roughness of graphite and aluminium alloy after hydro-abrasive machining. In: Advances in Manufacturing, Lecture Notes in Mechanical Engineering, pp. 805–813. Springer. (2018). https://doi.org/10.1007/978-3-319-68619-6_78

  12. Bodnarova, L., Valek, J., Sitek, L., Foldyna, J.: Effect of high temperatures on cement composite materials in concrete structures. Acta Geodynamica et Geomaterialia 10(2), 173–180 (2013)

    Article  Google Scholar 

  13. Hutyrova, Z., Scucka, J., Hloch, S., Hlavacek, P., Zelenak, M.: Turning of wood plastic composites by water jet and abrasive water jet. Int. J. Adv. Manuf. Technol. 84(5–8), 1615–1623 (2016). https://doi.org/10.1007/s00170-015-7831-6

    Article  Google Scholar 

  14. Yue, Z., Huang, C., Zhu, H., et al.: Optimization of machining parameters in the abrasive waterjet turning of alumina ceramic based on the response surface methodology. Int. J. Adv. Manuf. Technol. 71(9–12), 2107–2114 (2017). https://doi.org/10.1007/s00170-014-5624-y

    Article  Google Scholar 

  15. Hutyrova, Z., Zajac, J., Michalik, P., Mital, D., Duplak, J., Gajdos, S.: Study of surface roughness of machined polymer composite material. Int. J. Pol. Sci. (2015). article number 303517. https://doi.org/10.1155/2015/303517

  16. Popan, I.A., Contiu, G., Campbell, I.: Investigation on standoff distance influence on kerf characteristics in abrasive water jet cutting of composite materials. In: MATEC Web of Conference, vol. 137 (2017). article number 01009. https://doi.org/10.1051/matecconf/201713701009

  17. Hou, R., Wang, T., Lv, Z., Liu, Y.: Experimental study of the ultrasonic vibration-assisted abrasive waterjet micromachining the quartz glass. Adv. Mat. Sci. Eng. (2018). article number 8904234. https://doi.org/10.1155/2018/8904234

  18. Luiset, B., Sanchette, F., Billard, A., Schuster, D.: Mechanisms of stainless steels erosion by water droplets. Wear 303(1–2), 459–464 (2013). https://doi.org/10.1016/j.wear.2013.03.045

    Article  Google Scholar 

  19. Foldyna, J., Klich, J., Hlavacek, P., et al.: Erosion of metals by pulsating water jet. Tech. Gazette 19(2), 381–386 (2012)

    Google Scholar 

  20. Thomas, G.P., Brunton, J. H.: Drop impingement erosion of metals. In: Proceedings of the Royal Society of London, Series A, Mathematical and Physical Sciences, pp. 549–565. Royal Soc London (1970). https://doi.org/10.1098/rspa.1970.0022

  21. Zelenak, M., Foldyna, J., Scucka, J., Hloch, S., Riha, Z.: Visualisation and measurement of high-speed pulsating and continuous water jets. Measurement 72(1–8) (2015). https://doi.org/10.1016/j.measurement.2015.04.022

  22. Ríha, Z., Foldyna, J.: Ultrasonic pulsations of pressure in a water jet cutting tool. Tech. Gazette 19(3), 487–491 (2012)

    Google Scholar 

  23. Riha, Z., Foldyna, J.: Ultrasonic pulsations of pressure in a tool for water jet cutting. In: Vodni Paprsek 2011: Vyzkum, Vyvoj, Aplikace, pp. 245–254. Inst Geonics Cas, Ostrava-Poruba (2011)

    Google Scholar 

  24. Kušnerová, M., Foldyna, J., Sitek, L., et al.: Innovative approach to advanced modulated waterjet technology. Tech. Gazette 19(3), 475–480 (2012)

    Google Scholar 

  25. Lehocka, D., Klich, J., Foldyna, J., et al.: Copper alloys disintegration using pulsating water jet. Measurement 82, 375–383 (2016). https://doi.org/10.1016/j.measurement.2016.01.014

    Article  Google Scholar 

  26. Lehocká, D., Klich, J., Foldyna, J., et al.: Surface integrity evaluation of brass CW614N after impact of acoustically excited pulsating water jet. In: ICMEM 2016, International Conference on Manufacturing Engineering and materials, Book Series: Procedia Engineering, vol. 149, pp. 236–244. Elsevier Science BV (2016). https://doi.org/10.1016/j.proeng.2016.06.662

  27. Lehocka, D., Klichova, D., Foldyna, J., et al.: Comparison of the influence of acoustically enhanced pulsating water jet on selected surface integrity characteristics of CW004A copper and CW614N brass. Measurement 110, 230–238 (2017). https://doi.org/10.1016/j.measurement.2017.07.005

    Article  Google Scholar 

  28. Lehocka, D., Simkulet, V., Legutko, S.: Assessment of deformation characteristics on CW004A copper influenced by acoustically enhanced water jet. In: MANUFACTURING 2017, 5th International Scientific-Technical Conference on Advances in Manufacturing, pp. 717–724. Springer (2018). https://doi.org/10.1007/978-3-319-68619-6_69

  29. Lehocká, D., Botko, F., Simkulet, V., et al.: Study of surface topography of CW004A copper after PWJ disintegration. In: MMS Conference, 2nd EAI International Conference on Management of Manufacturing Systems. ACM (2018). https://doi.org/10.4108/eai.22-11-2017.2274347

  30. Srivastava, M., Hloch, S., Tripathi, R., et al.: Ultrasonically generated pulsed water jet peening of austenitic stainless-steel surfaces. J. Manuf. Process. 32, 455–468 (2018). https://doi.org/10.1016/j.jmapro.2018.03.016

    Article  Google Scholar 

  31. Li, D., Kang, Y., Ding, X.L., Liu, W.C.: Effects of the geometry of impinging surface on the pressure oscillations of self-resonating pulsed waterjet. Adv. Mech. Eng. 9(8) (2017). article number 1687814017720081. https://doi.org/10.1177/1687814017720081

  32. Klich, J., Klichova, D., Foldyna, V., Hlavacek, P., Foldyna, J.: Influence of variously modified surface of aluminium alloy on the effect of pulsating water jet. Strojniski Vestnik J. Mech. Eng. 63(10), 577–582 (2017). https://doi.org/10.5545/sv-jme.2017.4356

    Article  Google Scholar 

  33. Lehocka, D., Klich, J., Botko, F., Simkulet, V., Foldyna, J., Krejci, L., Storkan, Z., Kepic, J., Hatala, M.: Comparison of ultrasonically enhanced pulsating water jet erosion efficiency on mechanical surface treatment on the surface of aluminum alloy and stainless steel. Int. J. Adv. Manuf. Technol. 103(5–8), 1647–1656 (2019). https://doi.org/10.1007/s00170-019-03680-8

  34. Sitek, L., Foldyna, J., Martinec, P., et al.: Use of pulsating water jet technology for removal of concrete in repair of concrete structures. Baltic J. Road Bridge Eng. 6(4), 235–242 (2011). https://doi.org/10.3846/bjrbe.2011.30

    Article  Google Scholar 

  35. Foldyna, V., Foldyna, J., Klichova, D., Klich, J., Hlavacek, P., et al.: Effects of continuous and pulsating water jet on CNT/concrete composite. Strojniski Vjesnik J. Mech. Eng. 63(10), 583–589 (2017). https://doi.org/10.5545/sv-jme.2017.4357

    Article  Google Scholar 

  36. Foldyna, J., Sitek, L., Martinec, P., et al.: Rock cutting by pulsing water jets. In: Eurock 2005: Impact of Human Activity on the Geological Environment, pp. 129–134. A A Balkema Publisher (2005)

    Google Scholar 

  37. Dehkhoda, S., Hood, M.: An experimental study of surface and sub-surface damage in pulsed water-jet breakage of rocks. Int. J. Rock Mech. Min. Sci. 63, 138–147 (2013). https://doi.org/10.1016/j.ijrmms.2013.08.013

    Article  Google Scholar 

  38. Liu, Y., Wei, J.P., Ren, T., Lu, Z.H.: Experimental study of flow field structure of interrupted pulsed water jet and breakage of hard rock. Int. J. Rocks Min. Sci. 78, 253–261 (2015). https://doi.org/10.1016/j.ijrmms.2015.06.005

    Article  Google Scholar 

  39. Lu, Y.Y., Xiao, S.Q., Ge, Z.L., Zhou, Z., Ling, Y.F., Wang, L.: Experimental study on rock-breaking performance of water jets generated by self-rotatory bit and rock failure mechanism. Powder Technol. 346, 203–216 (2019). https://doi.org/10.1016/j.powtec.2019.01.078

    Article  Google Scholar 

  40. Hnizdil, M., Raudensky, M.: Descaling by pulsating water jet. In: METAL 2010 - 19th International Conference on Metallurgy and Materials, pp. 209–213. Tanger LTD (2010)

    Google Scholar 

  41. Lehocka, D., Klich, J., Pitel, J., Krejci, L., Storkan, Z., Duplakova, D., Schindlerova, V., Sajdlerova, I.: Analysis of the pulsating water jet maximum erosive effect on stainless steel. In: Lecture Notes in Mechanical Engineering. Advances in Manufacturing II, Mechanical Engineering, vol 4, pp. 233–241 (2019). https://doi.org/10.1007/978-3-030-16943-5_21

  42. Klich, J., Klichova, D., Hlavacek, P.: Effects of pulsating water jet on aluminium alloy with variously modified surface. Tech. Gazette 24(2), 341–345 (2017). https://doi.org/10.17559/TV-20140219100749

    Article  Google Scholar 

  43. Hloch, S., Srivastava, M., Krolczyk, J.B., et al.: Strengthening effect after disintegration of stainless steel using pulsating water jet. Tech. Gazette 25(4), 1075–1079 (2018). https://doi.org/10.17559/TV-20170327134630

    Article  Google Scholar 

  44. Stoye, H., Koehler, H., Mauermann, M., Majschak, J.P.: Investigations to increase cleaning efficiency with pulsed liquid jet. Chem. Ing. Tech. 86(5), 707–713 (2014). https://doi.org/10.1002/cite.201300047

    Article  Google Scholar 

  45. Augustin, W., Fuchs, T., Foste, H., Scholer, M., Majschak, J.P., Scholl, S.: Pulsed flow for enhanced cleaning in food processing. Food Bioprod. Process. 88(C4), 384–391 (2010). https://doi.org/10.1016/j.fbp.2010.08.007

    Article  Google Scholar 

  46. Teliskova, M., Torok, J., Duplakova, D., Kascak, J., Mezencevova, V., Bircak, J.: Non-destructive diagnostics of hard-to-reach places by spatial digitization. TEM J. Technol. Educ. Manag. Inform. 7(3), 612–616 (2018). https://doi.org/10.18421/TEM73-18

  47. Hreha, P., Radvanska, A., Knapcikova, L., Krolczyk, G.M., Legutko, S., Krolczyk, J.B., Hloch, S., Monka, P.: Roughness parameters calculation by means of on-line vibration monitoring emerging from AWJ interaction with material. Metrol. Measur. Syst. 22(2), 315–326 (2015). https://doi.org/10.1515/mms-2015-0024

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Slovak Research and Development Agency under the contract no. APVV-17-0490. This work was further supported by projects: KEGA č. 030TUKE-4/2018, VEGA č. 1/0492/16 - Research of the Possibilities of Elimination Deformations of the Thin Components with the Use of High Speed Machining and by the Ministry of Industry and Trade of the Czech Republic, project No. FV 30233. This publication is the result of the Project implementation: University Science Park TECHNICOM for innovative applications with the support of knowledge technologies - Phase II, ITMS2014+: 313011D232, supported by the European Regional Development Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dominika Lehocká .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lehocká, D. et al. (2021). Effect of the Ultrasonically Enhanced Water Jet on Copper Surface Topography at a Low Traverse Speed. In: Klichová, D., Sitek, L., Hloch, S., Valentinčič, J. (eds) Advances in Water Jetting. Water Jet 2019. Lecture Notes in Mechanical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-53491-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-53491-2_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-53490-5

  • Online ISBN: 978-3-030-53491-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics