Skip to main content

Creating a Database for Turned Surfaces

  • Conference paper
  • First Online:
Advances in Water Jetting (Water Jet 2019)

Abstract

This article deals with the evaluation of surface topography created by Abrasive Water Jet (AWJ) technology. The effects of machining parameters on the turned surface was analyzed by roughness parameters. Further attention is paid to the influence of technological factors on the surface quality created by abrasive water jet turning processes. Based on an input and output system, a database design was created providing the evaluation of the surface quality. Various materials were used for the database which should serve to optimize the abrasive water jet turning processes in order to increase the technological efficiency and contribute to its automation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Srivastava, A.K., Nag, A., Dixit, A.R., Tiwari, S., Srivastava, V.S.: Parametric study during abrasive water jet turning of hybrid metal matrix composite. In: Advances in Manufacturing Engineering and Materials, ICMEM 2018, pp. 72–84 (2019). https://doi.org/10.1007/978-3-319-99353-9_9

  2. Ali, Y.M., Wang, J.: Impact abrasive machining. In: Machining with Abrasives, pp. 385–419 (2011). https://doi.org/10.1007/978-1-4419-7302-3_9

  3. Sitek, L., Foldyna, J., Soucek, K.: Shaping of rock specimens for testing of uniaxial tensile strength by high speed abrasive water jet: first experience. In: EUROCK 2005: Impact of Human Activity on the Geological Environment, pp. 545–549 (2005)

    Google Scholar 

  4. Mlynarczuk, M., Skiba, M., Sitek, L., Hlavacek, P., Kozusnikova, A.: The research into the quality of rock surfaces obtained by abrasive water jet cutting. Arch. Min. Sci. 59(4), 925–940 (2014). https://doi.org/10.2478/amsc-2014-0064

    Article  Google Scholar 

  5. Mardi, K.B., Dixit, A.R., Mallick, A., Pramanik, A., Ballokova, B., Hvizdos, P., et al.: Surface integrity of Mg-based nanocomposite produced by Abrasive Water Jet Machining (AWJM). Mater. Manuf. Process. 32(15), 1707–1714 (2017). https://doi.org/10.1080/10426914.2017.1279306

    Article  Google Scholar 

  6. Hutyrova, Z., Scucka, J., Hloch, S., Hlavacek, P., Zelenak, M.: Turning of wood plastic composites by water jet and abrasive water jet. Int. J. Adv. Manuf. Technol. 84(5–8), 1615–1623 (2016). https://doi.org/10.1007/s00170-015-7831-6

    Article  Google Scholar 

  7. Kartal, F., Gokkaya, H.: Effect of abrasive water jet turning process parameters on surface roughness and material removal rate of AISI 1050 steel. Mater. Test. 57(9), 773–782 (2015). https://doi.org/10.3139/120.110777

    Article  Google Scholar 

  8. Carach, J., Hloch, S., Hlavacek, P., Scucka, J., et al.: Tangential turning of incoloy alloy 925 using abrasive water jet technology. Int. J. Adv. Manuf. Technol. 82(9–12), 1747–1752 (2016). https://doi.org/10.1007/s00170-015-7489-0

    Article  Google Scholar 

  9. Yue, Z.B., Huang, C.Z., Zhu, H.T., Wang, J., Yao, P., Liu, Z.W.: Optimization of machining parameters in the abrasive waterjet turning of alumina ceramic based on the response surface methodology. Int. J. Adv. Manuf. Technol. 71(9–12), 2107–2114 (2014). https://doi.org/10.1007/s00170-014-5624-y

    Article  Google Scholar 

  10. Li, W.Y., Zhu, H.T., Wang, J., Ali, Y.M., Huang, C.Z.: An investigation into the radial-mode abrasive waterjet turning process on high tensile steels. Int. J. Mech. Sci. 77, 365–375 (2013). https://doi.org/10.1016/j.ijmecsci.2013.05.005

    Article  Google Scholar 

  11. Axinte, D.A., Stepanian, J.P., Kong, M.C., McGourlay, J.: Abrasive waterjet turning-An efficient method to profile and dress grinding wheels. Int. J. Mach. Tools Manuf 49(3–4), 351–356 (2009). https://doi.org/10.1016/j.ijmachtools.2008.11.006

    Article  Google Scholar 

  12. Hreha, P., Radvanska, A., Hloch, S., Perzel, V., Krolczyk, G., Monkova, K.: Determination of vibration frequency depending on abrasive mass flow rate during abrasive water jet cutting. Int. J. Adv. Manuf. Technol. 77(1–4), 763–774 (2015). https://doi.org/10.1007/s00170-014-6497-9

    Article  Google Scholar 

  13. Hlaváček, P., Cárach, J., Hloch, S., Vasilko, K., Klichová, D., Klich, J., Lehocká, D.: Sandstone turning by abrasive waterjet. Rock Mech. Rock Eng. 48(6), 2489–2493 (2015). https://doi.org/10.1007/s00603-015-0719-9

    Article  Google Scholar 

  14. Ganovska, B., Molitoris, M., Hosovsky, A., Pitel, J., Krolczyk, J.B., Ruggierio, A., Krolczyk, G.M., Hloch, S.: Design of the model for the on-line control of the AWJ technology based on neural networks. Indian J. Eng. Mater. Sci. 23(4), 279–287 (2016)

    Google Scholar 

  15. Molitoris, M., Pitel, J., Hosovsky, A., Tothova, M., Zidek, K.: A review of research on water jet with slurry injection. In: International Conference on Manufacturing Engineering and Materials, ICMEM 2016, vol. 149, pp. 333–339 (2016)

    Google Scholar 

  16. Tekaut, I.: Theoretical evaluation of the effect of surfaces processed with abrasive water jet on fatigue life. Trans. Famena 43(2), 85–98 (2019). https://doi.org/10.21278/TOF.43207

    Article  Google Scholar 

  17. Hou, R.G., Huang, C.Z., Zhu, H.T., Wang, J.: Study on experiment device of abrasive water jet micro-turning. In: Advances in Materials Processing X, vol. 500, pp. 339–344 (2012). https://doi.org/10.4028/www.scientific.net/AMR.500.339

  18. Hatala, M., Duplak, J., Duplakova, D., Botko, F.: Effect of traverse speed on surface roughness parameters after laser cutting of non-alloy structural steel. TEM J.-Technol. Educ. Manag. Inform. 8(2), 402–408 (2019). https://doi.org/10.18421/TEM82-12

    Article  Google Scholar 

  19. Sitek, L.: High-pressure abrasive jet cutting using linear stepping movement. In: Geomechanics 93: Strata Mechanics/Numerical Methods/Water Jet Cutting/Mechanical Rock Disintegration, pp. 311–315 (1994)

    Google Scholar 

  20. Foldyna, J., Zelenak, M., Klich, J., Hlavacek, P., Sitek, L., Riha, Z.: The measurement of the velocity of abrasive particles at the suction part of the cutting head. Tehnicki Vjesnik-Technical Gazette 22(6), 1441–1446 (2015)

    Google Scholar 

  21. Perec, A., Pude, F., Kaufeld, M., Wegener, K.: Obtaining the selected surface roughness by means of mathematical model based parameter optimization in abrasive waterjet cutting. Strojniski Vestnik-J. Mech. Eng. 63(10), 606–613 (2017). https://doi.org/10.5545/sv-jme.2017.4463

    Article  Google Scholar 

  22. Duplak, J., Hatala, M., Duplakova, D., Botko, F.: Prediction model of surface roughness parameters of structural steel created by plasma arc cutting via full factor experiment. Materialwiss. Werkstofftech. 50(10), 1207–1220 (2019). https://doi.org/10.1002/mawe.201900032

    Article  Google Scholar 

  23. Cep, R., Malotova, S., Lichovnik, J., Hatala, M., Legutko, S.: The influence of cutting conditions on the selected parameters of the surface integrity. Acta Polytech. 58(6), 334–338 (2018). https://doi.org/10.14311/AP.2018.58.0334

    Article  Google Scholar 

  24. ISO 4287. Geometrical Product Specifications (GPS) - surface texture: profile method - terms. Definitions and surface texture parameters (1997)

    Google Scholar 

  25. Hutyrova, Z., Zajac, J., Michalik, P., Mital, D., Duplak, J., Gajdos, S.: Study of surface roughness of machined polymer composite material. Int. J. Polymer Sci. (2015). https://doi.org/10.1155/2015/303517. Article no. 303517

  26. Hreha, P., Radvanska, A., Knapcikova, L., Krolczyk, G.M., Legutko, S., Krolczyk, J.B., Hloch, S., Monka, P.: Roughness parameters calculation by means of on-line vibration monitoring emerging from AWJ interaction with material. Metrol. Measur. Syst. 22(2), 315–326 (2015). https://doi.org/10.1515/mms-2015-0024

    Article  Google Scholar 

  27. Vikram, G., Babu, N.R.: Modelling and analysis of abrasive water jet cut surface topography. Int. J. Mach. Tools Manuf 42(12), 1345–1354 (2002). https://doi.org/10.1016/S0890-6955(02)00064-0

    Article  Google Scholar 

Download references

Acknowledgments

This article was written within the scope of a project of the Czech Ministry of Industry and Trade No. FV30233. The authors are very thankful for the support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dagmar Klichová .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Klichová, D., Klich, J., Lehocká, D., Hlaváček, P., Sitek, L., Foldyna, V. (2021). Creating a Database for Turned Surfaces. In: Klichová, D., Sitek, L., Hloch, S., Valentinčič, J. (eds) Advances in Water Jetting. Water Jet 2019. Lecture Notes in Mechanical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-53491-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-53491-2_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-53490-5

  • Online ISBN: 978-3-030-53491-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics