Skip to main content

Mathematical Thermodynamics of Viscous Fluids

  • Chapter
  • First Online:

Part of the book series: Lecture Notes in Mathematics ((LNMCIME,volume 2200))

Abstract

This course is a short introduction to the mathematical theory of the motion of viscous fluids. We introduce the concept of weak solution to the Navier-Stokes-Fourier system and discuss its basic properties. In particular, we construct the weak solutions as a suitable limit of a mixed numerical scheme based on a combination of the finite volume and finite elements method. The question of stability and robustness of various classes of solutions is addressed with the help of the relative (modulated) energy functional. Related results concerning weak-strong uniqueness and conditional regularity of weak solutions are presented. Finally, we discuss the asymptotic limit when viscosity of the fluid tends to zero. Several examples of ill- posedness for the limit Euler system are given and an admissibility criterion based on the viscous approximation is proposed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. L. Ambrosio, Transport equation and Cauchy problem for BV vector fields. Invent. Math. 158, 227–260 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  2. S.N. Antontsev, A.V. Kazhikhov, V.N. Monakhov, Krajevyje zadaci mechaniki neodnorodnych zidkostej (Nauka, Novosibirsk, 1983)

    Google Scholar 

  3. J.M. Ball, A version of the fundamental theorem for Young measures, in PDE’s and Continuum Models of Phase Transitions. Lecture Notes in Physics, vol. 344 (Springer, Berlin, 1989), pp. 207–215

    Google Scholar 

  4. C. Bardos, M.C. Lopes Filho, D. Niu, H.J. Nussenzveig Lopes, E.S. Titi, Stability of two-dimensional viscous incompressible flows under three-dimensional perturbations and inviscid symmetry breaking. SIAM J. Math. Anal. 45(3), 1871–1885 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  5. S.E. Bechtel, F.J. Rooney, M.G. Forest, Connection between stability, convexity of internal energy, and the second law for compressible Newtonian fuids. J. Appl. Mech. 72, 299–300 (2005)

    Article  MATH  Google Scholar 

  6. E. Becker, Gasdynamik (Teubner-Verlag, Stuttgart, 1966)

    MATH  Google Scholar 

  7. M.E. Bogovskii, Solution of some vector analysis problems connected with operators div and grad (in Russian). Trudy Sem. S.L. Sobolev 80(1), 5–40 (1980)

    Google Scholar 

  8. F. Brezzi, M. Fortin, Mixed and Hybrid Finite Element Methods. Springer Series in Computational Mathematics, vol. 15 (Springer, New York, 1991)

    Google Scholar 

  9. J.K. Brooks, R.V. Chacon, Continuity and compactness of measures. Adv. Math. 37, 16–26 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  10. H. Callen, Thermodynamics and an Introduction to Thermostatistics (Wiley, New York, 1985)

    MATH  Google Scholar 

  11. D. Catania, M. D’Abbicco, P. Secchi, Stability of the linearized MHD-Maxwell free interface problem. Commun. Pure Appl. Anal. 13(6), 2407–2443 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  12. T. Chang, L. Hsiao, The Riemann problem and interaction of waves in gas dynamics, in Pitman Monographs and Surveys in Pure and Applied Mathematics, vol. 41 (Longman Scientific & Technical, Harlow; copublished in the United States with Wiley, New York, 1989)

    Google Scholar 

  13. G.-Q. Chen, J. Chen, Stability of rarefaction waves and vacuum states for the multidimensional Euler equations. J. Hyperbol. Differ. Equ. 4(1), 105–122 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. G.-Q. Chen, H. Frid, Uniqueness and asymptotic stability of Riemann solutions for the compressible Euler equations. Trans. Am. Math. Soc. 353(3), 1103–1117 (electronic) (2001)

    Google Scholar 

  15. G.-Q. Chen, H. Frid, Y. Li, Uniqueness and stability of Riemann solutions with large oscillation in gas dynamics. Commun. Math. Phys. 228(2), 201–217 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  16. E. Chiodaroli, A counterexample to well-posedness of entropy solutions to the compressible Euler system. J. Hyperbol. Differ. Equ. 11(3), 493–519 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  17. E. Chiodaroli, C. De Lellis, O. Kreml, Global ill-posedness of the isentropic system of gas dynamics. Commun. Pure Appl. Math. 68(7), 1157–1190 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  18. E. Chiodaroli, E. Feireisl, O. Kreml, On the weak solutions to the equations of a compressible heat conducting gas. Annal. Inst. Poincaré, Anal. Nonlinear. 32, 225–243 (2015)

    Google Scholar 

  19. R. Coifman, Y. Meyer, On commutators of singular integrals and bilinear singular integrals. Trans. Am. Math. Soc. 212, 315–331 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  20. R. Coifman, P.L. Lions, Y. Meyer, S. Semmes, Compensated compactness and Hardy spaces. J. Math. Pures Appl. 72, 247–286 (1993)

    MathSciNet  MATH  Google Scholar 

  21. D. Coutand, S. Shkoller, Well-posedness in smooth function spaces for moving-boundary 1-D compressible Euler equations in physical vacuum. Commun. Pure Appl. Math. 64(3), 328–366 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  22. D. Coutand, S. Shkoller, Well-posedness in smooth function spaces for the moving-boundary three-dimensional compressible Euler equations in physical vacuum. Arch. Ration. Mech. Anal. 206(2), 515–616 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  23. C.M. Dafermos, The second law of thermodynamics and stability. Arch. Ration. Mech. Anal. 70, 167–179 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  24. C.M. Dafermos, Hyperbolic Conservation Laws in Continuum Physics (Springer, Berlin, 2000)

    Book  MATH  Google Scholar 

  25. C. De Lellis, L. Székelyhidi Jr., On admissibility criteria for weak solutions of the Euler equations. Arch. Ration. Mech. Anal. 195(1), 225–260 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  26. R.J. DiPerna, P.-L. Lions, Ordinary differential equations, transport theory and Sobolev spaces. Invent. Math. 98, 511–547 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  27. W. E., Boundary layer theory and the zero-viscosity limit of the Navier-Stokes equation. Acta Math. Sin. (Engl. Ser.) 16(2), 207–218 (2000)

    Google Scholar 

  28. R. Eymard, T. Gallouët, R. Herbin, Finite volume methods, in Handbook of Numerical Analysis, vol. VII (North-Holland, Amsterdam, 2000), pp. 713–1020

    MATH  Google Scholar 

  29. Feerman, C.L.: Existence and smoothness of the Navier-Stokes equation. In: The Millennium Prize Problems, pp. 57–67. Clay Mathematics Institute, Cambridge (2006)

    Google Scholar 

  30. E. Feireisl, Dynamics of Viscous Compressible Fluids (Oxford University Press, Oxford, 2004)

    MATH  Google Scholar 

  31. E. Feireisl, On the motion of a viscous, compressible, and heat conducting fluid. Indiana Univ. Math. J. 53, 1707–1740 (2004)

    Article  MathSciNet  Google Scholar 

  32. E. Feireisl, Mathematical theory of compressible, viscous, and heat conducting fluids. Comput. Math. Appl. 53, 461–490 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  33. E. Feireisl, Relative entropies in thermodynamics of complete fluid systems. Discr. Contin. Dyn. Syst. Ser. A 32, 3059–3080 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  34. E. Feireisl, Vanishing dissipation limit for the Navier-Stokes-Fourier system. Commun. Math. Sci. 14(6), 1535–1551 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  35. E. Feireisl, A. Novotný, Singular Limits in Thermodynamics of Viscous Fluids (Birkhäuser-Verlag, Basel, 2009)

    Book  MATH  Google Scholar 

  36. E. Feireisl, A. Novotný, Weak-strong uniqueness property for the full Navier-Stokes-Fourier system. Arch. Ration. Mech. Anal. 204, 683–706 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  37. E. Feireisl, Y. Sun, Robustness of one-dimensional viscous fluid motion under multidimensional perturbations. J. Differ. Equ. 259(12), 7529–7539 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  38. E. Feireisl, Y. Sun, Conditional regularity of very weak solutions to the Navier-Stokes-Fourier system, in Recent Advances in PDEs and Applications (AMS, Providence, 2016), pp. 179–200

    MATH  Google Scholar 

  39. E. Feireisl, A. Novotný, H. Petzeltová, On the existence of globally defined weak solutions to the Navier-Stokes equations of compressible isentropic fluids. J. Math. Fluid Mech. 3, 358–392 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  40. E. Feireisl, O. Kreml, A. Vasseur, Stability of the isentropic Riemann solutions of the full multidimensional Euler system. SIAM J. Math. Anal. 47(3), 2416–2425 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  41. E. Feireisl, T. Karper, A. Novotný, A convergent numerical method for the Navier–Stokes–Fourier system. IMA J. Numer. Anal. 36(4), 1477–1535 (2016)

    Article  MathSciNet  Google Scholar 

  42. G.P. Galdi, An Introduction to the Mathematical Theory of the Navier-Stokes Equations, 2nd edn. (Springer, New York, 2003)

    Google Scholar 

  43. D. Hoff, Spherically symmetric solutions of the Navier-Stokes equations for compressible, isothermal flow with large, discontinuous initial data. Indiana Univ. Math. J. 41, 1225–1302 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  44. D. Hoff, Discontinuous solutions of the Navier-Stokes equations for multidimensional flows of heat conducting fluids. Arch. Ration. Mech. Anal. 139, 303–354 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  45. D. Jesslé, B.J. Jin, A. Novotný, Navier-Stokes-Fourier system on unbounded domains: weak solutions, relative entropies, weak-strong uniqueness. SIAM J. Math. Anal. 45(3), 1907–1951 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  46. A.V. Kazhikhov, Correctness “in the large” of mixed boundary value problems for a model system of equations of a viscous gas. Dinamika Splošn. Sredy, 21(Tecenie Zidkost. so Svobod. Granicami), 18–47, 188 (1975)

    Google Scholar 

  47. J.-L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires (Dunod, Gautthier - Villars, Paris, 1969)

    MATH  Google Scholar 

  48. P.-L. Lions, Mathematical Topics in Fluid Dynamics, Vol.1, Incompressible Models (Oxford Science Publication, Oxford, 1996)

    Google Scholar 

  49. P.-L. Lions, Mathematical Topics in Fluid Dynamics, Vol.2, Compressible Models (Oxford Science Publication, Oxford, 1998)

    Google Scholar 

  50. A. Majda, Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables. Applied Mathematical Sciences, vol. 53 (Springer, New York, 1984)

    Google Scholar 

  51. N. Masmoudi, Examples of singular limits in hydrodynamics, in Handbook of Differential Equations, III, ed. by C. Dafermos, E. Feireisl (Elsevier, Amsterdam, 2006)

    Google Scholar 

  52. A. Matsumura, T. Nishida, The initial value problem for the equations of motion of viscous and heat-conductive gases. J. Math. Kyoto Univ. 20, 67–104 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  53. A. Matsumura, T. Nishida, The initial value problem for the equations of motion of compressible and heat conductive fluids. Commun. Math. Phys. 89, 445–464 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  54. F. Murat, Compacité par compensation. Ann. Sc. Norm. Sup. Pisa, Cl. Sci. Ser. 5 IV, 489–507 (1978)

    Google Scholar 

  55. A. Novotný, I. Straškraba, Introduction to the Mathematical Theory of Compressible Flow (Oxford University Press, Oxford, 2004)

    MATH  Google Scholar 

  56. P. Pedregal, Parametrized Measures and Variational Principles (Birkhäuser, Basel, 1997)

    Book  MATH  Google Scholar 

  57. L. Poul, On dynamics of fluids in astrophysics. J. Evol. Equ. 9(1), 37–66 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  58. S. Schochet, The compressible Euler equations in a bounded domain: existence of solutions and the incompressible limit. Commun. Math. Phys. 104, 49–75 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  59. P. Secchi, Y. Trakhinin, Well-posedness of the plasma-vacuum interface problem. Nonlinearity 27(1), 105–169 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  60. D. Serre, Variation de grande amplitude pour la densité d’un fluid viscueux compressible. Physica D 48, 113–128 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  61. J. Smoller, Shock Waves and Reaction-Diffusion Equations (Springer, New York, 1967)

    MATH  Google Scholar 

  62. L. Tartar, Compensated compactness and applications to partial differential equations, in Nonlinear Analysis and Mechanics: Heriot-Watt Symposium, ed. by L.J. Knopps. Research Notes in Mathematics, vol. 39 (Pitman, Boston, 1975), pp. 136–211

    Google Scholar 

  63. C.H. Wilcox, Sound Propagation in Stratified Fluids. Applied Mathematical Sciences, vol. 50 (Springer, Berlin, 1984)

    Google Scholar 

  64. Z. Yi, An L p theorem for compensated compactness. Proc. R. Soc. Edinb. 122 A, 177–189 (1992)

    Google Scholar 

  65. A.A. Zlotnik, A.A. Amosov, Generalized solutions “in the large” of equations of the one-dimensional motion of a viscous barotropic gas. Dokl. Akad. Nauk SSSR 299(6), 1303–1307 (1988)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The research leading to these results has received funding from the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007–2013)/ ERC Grant Agreement 320078. The Institute of Mathematics of the Academy of Sciences of the Czech Republic is supported by RVO:67985840.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduard Feireisl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Feireisl, E. (2017). Mathematical Thermodynamics of Viscous Fluids. In: Feireisl, E., Rocca, E. (eds) Mathematical Thermodynamics of Complex Fluids. Lecture Notes in Mathematics(), vol 2200. Springer, Cham. https://doi.org/10.1007/978-3-319-67600-5_2

Download citation

Publish with us

Policies and ethics