Skip to main content

Part of the book series: Springer INdAM Series ((SINDAMS,volume 22))

Abstract

The diffusion equation with a bounded saturation range under the time derivative and with Robin boundary conditions is shown to admit a regular bounded solution provided that the saturation function and the permeability coefficient have controlled decay at infinity. The result remains valid even if Preisach hysteresis is present in the pressure-saturation relation. The method of proof is based on a Moser-Alikakos iteration scheme which is compatible with a generalized Preisach energy dissipation mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Albers, B.: Modeling the hysteretic behavior of the capillary pressure in partially saturated porous media – a review. Acta Mech. 225, 2163–2189 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  2. Albers, B., Krejčí, P.: Unsaturated porous media flow with thermomechanical interaction. Math. Methods Appl. Sci. 39, 2220–2238 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  3. Alikakos, N.D.: An application of the invariance principle to reaction-diffusion equations. J. Differ. Equ. 33, 201–225 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  4. Alt, H.W., Luckhaus, S.: Quasilinear elliptic-parabolic differential equations. Math. Z 183, 311–341 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  5. Alt, H.W., Luckhaus, S., Visintin, A.: On nonstationary flow through porous media. Ann. Mat. Pura Appl. IV. Ser. 136, 303–316 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  6. Aronson, D.G., Bénilan, P.: Régularité des solutions de l’équation des milieux poreux dans \(\mathbb{R}^{N}\). C. R. Acad. Sci. Paris, Sér. A 288, 103–105 (1979)

    MATH  Google Scholar 

  7. Bagagiolo, F., Visintin, A.: Hysteresis in filtration through porous media. Z. Anal. Anwendungen 19, 977–997 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  8. Bagagiolo, F., Visintin, A.: Porous media filtration with hysteresis. Adv. Math. Sci. Appl. 14, 379–403 (2004)

    MATH  MathSciNet  Google Scholar 

  9. Besov, O.V., Il’in, V.P., Nikol’skiĭ, S.M.: Integral Representations of Functions and Imbedding Theorems. Scripta Series in Mathematics. Halsted Press/Wiley, New York,Toronto, London (vol. I, 1978), (vol. II, 1979) [Russian version Nauka, Moscow (1975)]

    Google Scholar 

  10. Brokate, M., Visintin, A.: Properties of the Preisach model for hysteresis. J. Reine Angew. Math. 402, 1–40 (1989)

    MATH  MathSciNet  Google Scholar 

  11. Colli, P., Gilardi, G., Podio-Guidugli, P., Sprekels, J.: Global existence and uniqueness for a singular/degenerate Cahn-Hilliard system with viscosity. J. Differ. Equ. 254, 4217–4244 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  12. Detmann, B., Krejčí, P., Rocca, E.: Solvability of an unsaturated porous media flow problem with thermomechanical interaction. SIAM J. Math. Anal. 48, 4175–4201 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  13. Droniou, J., Eymard, R., Talbot, K.S.: Convergence in C([0, T]; L 2(Ω)) of weak solutions to perturbed doubly degenerate parabolic equations. J. Differ. Equ. 260, 7821–7860 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  14. Flynn, D., McNamara, H., O’Kane. J.P., Pokrovskiĭ, A.V.: Application of the Preisach model to soil-moisture hysteresis. In: Bertotti, G., Mayergoyz, I. (eds.) The Science of Hysteresis, vol. 3, pp. 689–744. Academic, Oxford (2006)

    Google Scholar 

  15. Gilardi, G.: A new approach to evolution free boundary problems. Commun. Partial Differ. Equ. 4, 1099–1122 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  16. Haverkamp, R., Reggiani, P., Ross, P.J., Parlange, J.-Y.: Soil water hysteresis prediction model based on theory and geometric scaling. In: Raats, P.A.C., Smiles, D., Warrick, A.W. (eds.) Environmental Mechanics, Water, Mass and Energy Transfer in the Biosphere, pp. 213–246. American Geophysical Union, Washington (2002)

    Chapter  Google Scholar 

  17. Hilpert, M.: On uniqueness for evolution problems with hysteresis. In: Rodrigues, J.F. (ed.) Mathematical Models for Phase Change Problems, pp. 377–388. Birkhäuser, Basel (1989)

    Chapter  Google Scholar 

  18. Krasnosel’skiĭ, M.A., Pokrovskiĭ, A.V.: Systems with Hysteresis. Springer, Berlin (1989). Nauka, Moscow (1983) [Russian edn.]

    Google Scholar 

  19. Krejčí, P.: On Maxwell equations with the Preisach hysteresis operator: the one-dimensional time-periodic case. Apl. Mat. 34, 364–374 (1989)

    MATH  MathSciNet  Google Scholar 

  20. Krejčí, P.: Hysteresis memory preserving operators. Appl. Math. 36, 305–326 (1991)

    MATH  MathSciNet  Google Scholar 

  21. Krejčí, P.: Hysteresis, Convexity and Dissipation in Hyperbolic Equations. Gakuto International Series: Mathematical Sciences and Applications, vol. 8. Gakkotōsho, Tokyo (1996)

    Google Scholar 

  22. Ladyzhenskaya, O.A., Solonnikov, V.A., Ural’tseva, N.N.: Linear and Quasi-linear Equations of Parabolic Type. American Mathematical Science, Providence, RI (1968)

    MATH  Google Scholar 

  23. Preisach, F.: Über die magnetische Nachwirkung. Z. Phys. 94, 277–302 (1935)

    Article  Google Scholar 

  24. Showalter, R.E., Stefanelli, U.: Diffusion in poro-plastic media. Math. Methods Appl. Sci. 27, 2131–2151 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  25. Tao, Y., Winkler, M.: Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with subcritical sensitivity. J. Differ. Equ. 252, 692–715 (2012)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavel Krejčí .

Editor information

Editors and Affiliations

Appendices

A Auxiliary Section A: Embeddings and Interpolations

We summarize here a few standard results from the theory of Lebesgue spaces L p and Sobolev spaces W k, p than all can be found, e. g., in the monograph [9]. Recall that we denote by | ⋅ | p the norm in L p(Ω), and by ∥⋅ ∥ p the norm in L p(Ω × (0, T)). We start with the interpolation inequality in Lebesgue spaces which we state in the following form.

Lemma A.1

Let 1 ≤ p 1 < p < p 0∞ be given. Then for every \(v \in L^{p_{0}}(\varOmega )\) we have

$$\displaystyle{ \vert v\vert _{p} \leq \vert v\vert _{p_{0}}^{\eta }\vert v\vert _{p_{1}}^{1-\eta } }$$
(A.1)

with

$$\displaystyle{ \eta = \frac{ \frac{1} {p_{1}} -\frac{1} {p}} { \frac{1} {p_{1}} - \frac{1} {p_{0}} } \in (0,1). }$$
(A.2)

Indeed, the same formula holds if Ω is replaced with Ω × (0, T) and the norms | ⋅ | are replaced with ∥⋅ ∥.

We also refer to the Gagliardo-Nirenberg inequality:

Lemma A.2

There exists a constant C > 0 such that for every wW 1,p(Ω) the inequality

$$\displaystyle{ \vert w\vert _{q} \leq C\left (\vert w\vert _{s} + \vert w\vert _{s}^{1-\rho }\vert \nabla w\vert _{ p}^{\rho }\right ) }$$
(A.3)

with

$$\displaystyle{\rho = \frac{\frac{1} {s} -\frac{1} {q}} {\frac{1} {s} + \frac{1} {N} -\frac{1} {p}} \in (0,1)}$$

is valid for all 1 ≤ s < q, 1∕q > (1∕p) − (1∕N),

as well as to the Poincaré inequality:

Lemma A.3

Under Hypothesis  2.1  (vii), there exists a constant C > 0 such that the inequality

$$\displaystyle{ \vert v\vert _{2}^{2} \leq C\left (\int _{\varOmega }\vert \nabla v\vert ^{2}\,\mathrm{d}x +\int _{ \partial \varOmega }b(x)\vert v\vert ^{2}\,\mathrm{d}s(x)\right ) }$$
(A.4)

holds for every vL 2(Ω).

We define the space

$$\displaystyle{X =\{ w \in W^{1,2}(\varOmega \times (0,T)): \nabla w \in L^{\infty }(0,T;L^{2}(\varOmega ))\},}$$

and denote by the symbol ↪ ↪ the compact embedding relation. The following anisotropic compact embeddings are established in [9]:

$$\displaystyle{ X\hookrightarrow \hookrightarrow L^{2}(\varOmega;C[0,T]), }$$
(A.5)

and

$$\displaystyle{ X\hookrightarrow \hookrightarrow L^{2}(\partial \varOmega \times (0,T)). }$$
(A.6)

B Auxiliary Section B: The Preisach Operator

We use here the variational definition of the Preisach operator which was shown in [19] to equivalent to the original construction in [23]. It is based on the variational inequality for the unknown function ξ r

$$\displaystyle{ \left.\begin{array}{ll} \vert v(t) -\xi _{r}(t)\vert \leq r &\forall t \in [0,T]\,, \\ \dot{\xi }_{r}(t)(v(t) -\xi _{r}(t) - y) \geq 0\ \ \mbox{ a. e. }\ &\forall \vert y\vert \leq r\,, \\ \xi _{r}(0) = P_{r}(v(0))\,, \end{array} \right \} }$$
(B.1)

where r > 0 is a fixed constraint, P r is the mapping defined by (3.2), vW 1,1(0, T) is a given input, and the dot denotes time derivative. The mapping \(\mathfrak{p}_{r}: W^{1,1}(0,T) \rightarrow W^{1,1}(0,T)\) which with v associates the solution ξ r W 1,1(0, T) of (B.1) is called the play operator according to [18]. It is proved in [18, §2] that for arbitrary two inputs v 1, v 2W 1,1(0, T), the inequality

$$\displaystyle{ \vert \mathfrak{p}_{r}[v_{1}](t) - \mathfrak{p}_{r}[v_{2}](t)\vert \leq \max _{\tau \in [0,t]}\vert v_{1}(\tau ) - v_{2}(\tau )\vert }$$
(B.2)

holds for all t ∈ [0, T], hence the play operator can be extended into a Lipschitz continuous mapping \(\mathfrak{p}_{r}: C[0,T] \rightarrow C[0,T]\). Furthermore, directly from the definition (B.1) we can infer that the identity

$$\displaystyle{ \dot{\xi }_{r}(t)\dot{v}(t) = (\dot{\xi }_{r}(t))^{2} }$$
(B.3)

holds a. e. for every vW 1,1(0, T). For inputs v depending on xΩ and t ∈ (0, T) we define the play operator \(\mathfrak{p}_{r}: L^{p}(\varOmega;C[0,T]) \rightarrow L^{p}(\varOmega;C[0,T])\) for 1 ≤ p by the formula

$$\displaystyle{ \mathfrak{p}_{r}[v](x,t) = \mathfrak{p}_{r}[v(x,\cdot ](t) }$$
(B.4)

and by virtue of (B.2), the play is Lipschitz continuous in L p(Ω; C[0, T]) for all 1 ≤ p.

Given a nonnegative function \(\psi \in L^{\infty }(\varOmega;L^{1}((0,\infty ) \times \mathbb{R}))\), the Preisach operator G: L p(Ω; C[0, T]) → L p(Ω; C[0, T]) is for (x, t) ∈ Ω× [0, T] defined by the formula

$$\displaystyle{ G[v](x,t) =\int _{ 0}^{\infty }\int _{ 0}^{\mathfrak{p}_{r}[v](x,t)}\psi (x,r,z)\,\mathrm{d}z\,\mathrm{d}r\,, }$$
(B.5)

and ψ is called the Preisach density of G. If we denote for \((x,r,v) \in \varOmega \times (0,\infty ) \times \mathbb{R}\)

$$\displaystyle{ \varPsi (x,r,v) =\int _{ 0}^{v}\psi (x,r,z)\,\mathrm{d}z\,, }$$
(B.6)

then (B.5) can be written in the form

$$\displaystyle{ G[v](x,t) =\int _{ 0}^{\infty }\varPsi (x,r,\mathfrak{p}_{ r}[v](x,t))\,\mathrm{d}r\,. }$$
(B.7)

The following statement is an easy consequence of (B.2).

Proposition B.1

G: L p(Ω; C[0, T]) → L p(Ω; C[0, T]) is Lipschitz continuous for every 1 ≤ p∞.

From (B.3) it follows that for each vL 2(Ω; W 1,1(0, T)) we have

$$\displaystyle{ (G[v])_{t}v_{t} \geq 0\quad \mbox{ a. e.} }$$
(B.8)

The Preisach operator is monotone in the sense of Hilpert’s inequality

$$\displaystyle{ (G[v_{1}] - G[v_{2}])_{t}H(v_{1} - v_{2}) \geq \frac{\partial } {\partial t}\int _{0}^{\infty }(\varPsi (x,r,\mathfrak{p}_{ r}[v_{1}]) -\varPsi (x,r,\mathfrak{p}_{r}[v_{2}]))^{+}\,\mathrm{d}r }$$
(B.9)

established in [17], which holds a. e. for all v 1, v 2L 2(Ω; W 1,1(0, T)) and where H is the Heaviside function (3.24) and (⋅ )+ denotes the positive part. A different proof can be found in [21, Proposition II.2.12].

Let \(\lambda: \mathbb{R} \rightarrow \mathbb{R}\) be a nondecreasing function, λ(0) = 0, and let vL 2(Ω; W 1,1(0, T)) be given. Put \(\xi _{r} = \mathfrak{p}_{r}[v]\). By definition (B.1) of the play we have

$$\displaystyle{(\xi _{r})_{t}(v -\xi _{r}) \geq 0\quad \mbox{ a. e.},}$$

hence,

$$\displaystyle{(\xi _{r})_{t}(\lambda (v) -\lambda (\xi _{r})) \geq 0\quad \mbox{ a. e.}}$$

It follows that

$$\displaystyle{(G[v])_{t}\lambda (v) =\int _{ 0}^{\infty }\psi (x,r,\xi _{ r})(\xi _{r})_{t}\lambda (v)\,\mathrm{d}r \geq \int _{0}^{\infty }\psi (x,r,\xi _{ r})(\xi _{r})_{t}\lambda (\xi _{r})\,\mathrm{d}r\quad \mbox{ a. e.}}$$

and we conclude that

$$\displaystyle{ (G[v])_{t}\lambda (v) \geq (U_{\lambda }[v])_{t}\quad \mbox{ a. e.}, }$$
(B.10)

where

$$\displaystyle{ U_{\lambda }[v] =\int _{ 0}^{\infty }\int _{ 0}^{\mathfrak{p}_{r}[v]}\psi (x,r,z)\lambda (z)\,\mathrm{d}z\,\mathrm{d}r\,. }$$
(B.11)

This can be interpreted as a generalized hysteresis energy inequality with hysteresis potential U λ , see [21, Chapter II].

Let us cite also the following result of [20].

Proposition B.2

Let \(J:\varOmega \times \mathbb{R} \rightarrow \mathbb{R}: (x,v)\mapsto J(x,v)\) be a function such that \(\frac{\partial J} {\partial v} \in L^{\infty }(\varOmega \times \mathbb{R})\) is positive almost everywhere, J(x, 0) = 0, J(x, ±) = ±∞ a. e., and let G be a Preisach operator with Preisach density \(\psi \in L^{\infty }(\varOmega;L^{1}((0,\infty ) \times \mathbb{R}))\) , ψ(x, r, v) ≥ 0 a. e. Then the operator G J defined by the formula

$$\displaystyle{ G_{J}[u](x,t) = G[J(x,u(x,\cdot ))](t) }$$
(B.12)

is a Preisach operator of the form  (B.5) with density

$$\displaystyle\begin{array}{rcl} & & \psi _{J}(x,r,z) = \frac{\partial J} {\partial v}\!\left (x, \frac{z+r} {2} \right )\frac{\partial J} {\partial v}\!\left (x, \frac{z-r} {2} \right ) \\ & & \quad \times \psi \left (x,J\!\left (x, \frac{z+r} {2} \right )-J\!\left (x, \frac{z-r} {2} \right ),J\!\left (x, \frac{z+r} {2} \right )+J\!\left (x, \frac{z-r} {2} \right )\right ).\qquad \quad {}\end{array}$$
(B.13)

Note that we have ψ J ≥ 0 and

$$\displaystyle{ \int _{0}^{\infty }\int _{ -\infty }^{\infty }\psi _{ J}(x,r,z)\,\mathrm{d}z\,\mathrm{d}r =\int _{ 0}^{\infty }\int _{ -\infty }^{\infty }\psi (x,r,z)\,\mathrm{d}z\,\mathrm{d}r\quad \mbox{ a. e.} }$$
(B.14)

Acknowledgements

This research was supported by the GAČR Grant GA15-12227S and RVO: 67985840.

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Krejčí, P. (2017). Boundedness of Solutions to a Degenerate Diffusion Equation. In: Colli, P., Favini, A., Rocca, E., Schimperna, G., Sprekels, J. (eds) Solvability, Regularity, and Optimal Control of Boundary Value Problems for PDEs. Springer INdAM Series, vol 22. Springer, Cham. https://doi.org/10.1007/978-3-319-64489-9_12

Download citation

Publish with us

Policies and ethics