Skip to main content

Test Models for Statistical Inference: Two-Dimensional Reaction Systems Displaying Limit Cycle Bifurcations and Bistability

  • Chapter
  • First Online:
Stochastic Processes, Multiscale Modeling, and Numerical Methods for Computational Cellular Biology

Abstract

Theoretical results regarding two-dimensional ordinary-differential equations (ODEs) with second-degree polynomial right-hand sides are summarized, with an emphasis on limit cycles, limit cycle bifurcations, and multistability. The results are then used for construction of two reaction systems, which are at the deterministic level described by two-dimensional third-degree kinetic ODEs. The first system displays a homoclinic bifurcation, and a coexistence of a stable critical point and a stable limit cycle in the phase plane. The second system displays a multiple limit cycle bifurcation, and a coexistence of two stable limit cycles. The deterministic solutions (obtained by solving the kinetic ODEs) and stochastic solutions [noisy time-series generating by the Gillespie algorithm, and the underlying probability distributions obtained by solving the chemical master equation (CME)] of the constructed systems are compared, and the observed differences highlighted. The constructed systems are proposed as test problems for statistical methods, which are designed to detect and classify properties of given noisy time-series arising from biological applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Let us note that the limit cycles corresponding to (3) are highly sensitive to changes in the parameters (4). Thus, during numerical simulations, parameters (4) should not be rounded-off. One can also design bicyclic systems which are less parameter sensitive, see Appendix 2.

References

  1. M. Pineda-Krch, H.J. Blok, U. Dieckmann, M. Doebeli, A tale of two cycles – distinguishing quasi-cycles and limit cycles in finite predator-prey populations. Oikos 116(1), 53–64 (2007)

    Article  Google Scholar 

  2. T. Plesa, T. Vejchodský, R. Erban, Chemical reaction systems with a homoclinic bifurcation: an inverse problem. J. Math. Chem. 54(10), 1884–1915 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  3. P. Érdi, J. Tóth, Mathematical Models of Chemical Reactions. Theory and Applications of Deterministic and Stochastic Models (Manchester University Press/Princeton University Press, Princeton, 1989)

    Google Scholar 

  4. D.L.K. Toner, R. Grima, Molecular noise induces concentration oscillations in chemical systems with stable node steady states. J. Chem. Phys. 138, 055101 (2013)

    Article  Google Scholar 

  5. S. Louca, M. Doebeli, Distinguishing intrinsic limit cycles from forced oscillations in ecological time series. Theor. Ecol. 7(4), 381–390 (2014)

    Article  Google Scholar 

  6. R. Erban, S.J. Chapman, I. Kevrekidis, T. Vejchodský, Analysis of a stochastic chemical system close to a SNIPER bifurcation of its mean-field model. SIAM J. Appl. Math. 70(3), 984–1016 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. S. Liao, T. Vejchodský, R. Erban, Tensor methods for parameter estimation and bifurcation analysis of stochastic reaction networks. J. R. Soc. Interface 12(108), 20150233 (2015)

    Google Scholar 

  8. P. Thomas, A.V. Straube, J. Timmer, C. Fleck, R. Grima, Signatures of nonlinearity in single cell noise-induced oscillations. J. Theor. Biol. 335, 222–234 (2013)

    Article  MathSciNet  Google Scholar 

  9. W. Vance, J. Ross, Fluctuations near limit cycles in chemical reaction systems. J. Chem. Phys. 105, 479–487 (1996)

    Article  Google Scholar 

  10. R.P. Boland, T. Galla, A.J. McKane, How limit cycles and quasi-cycles are related in systems with intrinsic noise. J. Stat. Mech. Theory Exp. 2008, P09001, 1–27 (2008)

    Google Scholar 

  11. T. Xiao, J. Ma, Z. Hou, H. Xin, Effects of internal noise in mesoscopic chemical systems near Hopf bifurcation. New J. Phys. 9, 403 (2007)

    Article  Google Scholar 

  12. M.T. Borisuk, J.J. Tyson, Bifurcation analysis of a model of mitotic control in frog eggs. J. Theor. Biol. 195, 69–85 (1998)

    Article  Google Scholar 

  13. M.Y. Li, H. Shu, Multiple stable periodic oscillations in a mathematical model of CTL response to HTLV-I infection. Bull. Math. Biol. 73, 1774–1793 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. A. Amiranashvili, N.D. Schnellbächer, U.S. Schwarz, Stochastic switching between multistable oscillation patterns of the Min-system. New J. Phys. 18, 093049 (2016)

    Article  Google Scholar 

  15. F. Schlögl, Chemical reaction models for nonequilibrium phase transition. Z. Physik. 253(2), 147–161 (1972)

    Article  MathSciNet  Google Scholar 

  16. V.A. Gaiko, Global Bifurcation Theory and Hilbert’s Sixteenth Problem (Springer Science, New York, 2003)

    Book  MATH  Google Scholar 

  17. V.A. Gaiko, On the geometry of polynomial dynamical systems. J. Math. Sci. 157(3), 400–412 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. L.M. Perko, Limit cycles of quadratic systems in the plane. Rocky Mt. J. Math. 14(3), 619–645 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  19. L.A. Cherkas, J.C. Artés, J. Llibre, Quadratic systems with limit cycles of normal size. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica 1(41), 31–46 (2003)

    Google Scholar 

  20. J.C. Artés, J. Llibre, Quadratic vector fields with a weak focus of third order. Publ. Math. 41, 7–39 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  21. C. Escher, Bifurcation and coexistence of several limit cycles in models of open two-variable quadratic mass-action systems. Chem. Phys. 63, 337–348 (1981)

    Article  MathSciNet  Google Scholar 

  22. L.M. Perko, Differential Equations and Dynamical Systems, 3rd edn. (Springer, New York, 2001)

    Book  MATH  Google Scholar 

  23. A.K. Dutt, Asymptotically stable limit cycles in a model of glycolytic oscillations. Chem. Phys. Lett. 208, 139–142 (1992)

    Article  Google Scholar 

  24. S. Kar, W.T. Baumann, M.R. Paul, J.J. Tyson, Exploring the roles of noise in the eukaryotic cell cycle. Proc. Natl. Acad. Sci. U. S. A. 106, 6471–6476 (2009)

    Article  Google Scholar 

  25. J.M.G. Vilar, H.Y. Kueh, N. Barkai, S. Leibler, Mechanisms of noise-resistance in genetic oscillators. Proc. Natl. Acad. Sci. U. S. A. 99(9), 5988–5992 (2002)

    Article  Google Scholar 

  26. Y.A. Kuznetsov, Elements of Applied Bifurcation Theory, 2nd edn. (Springer, New York, 2000)

    Google Scholar 

  27. M.S. Ghomi, A. Ciliberto, S. Kar, B. Novak, J.J. Tyson, Antagonism and bistability in protein interaction networks. J. Theor. Biol. 218, 209–218 (2008)

    Article  MathSciNet  Google Scholar 

  28. Y. Dublanche, K. Michalodimitrakis, N. Kummerer, M. Foglierini, L. Serrano, Noise in transcription negative feedback loops: simulation and experimental analysis. Mol. Syst. Biol. 2(41), E1–E12 (2006)

    Google Scholar 

  29. N. Bautin, On the number of limit cycles which appear with a variation of coefficients from an equilibrium position of focus or center type. Am. Math. Soc. Transl. 100, 3–19 (1954)

    MathSciNet  Google Scholar 

  30. M. Han, H. Zhu, The loop quantities and bifurcations of homoclinic loops. J. Diff. Equ. 234, 339–359 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  31. W. Coppel, A survey of quadratic systems. J. Diff. Equ. 2, 293–304 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  32. C. Chicone, T. Jinghuang, On general properties of quadratic systems. Am. Math. Mon. 89, 167–178 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  33. C. Escher, Double Hopf-bifurcation in plane quadratic mass-action systems. Chem. Phys. 67, 239–244 (1982)

    Article  MathSciNet  Google Scholar 

  34. C. Escher, Models of chemical reaction systems with exactly evaluable limit cycle oscillations. Z. Phys. B 35, 351–361 (1979)

    Article  MathSciNet  Google Scholar 

  35. G.M. Guidi, A. Goldbeter, Bistability without hysteresis in chemical reaction systems: a theoretical analysis of irreversible transitions between multiple steady states. J. Phys. Chem. 101, 9367–9376 (1997)

    Article  Google Scholar 

  36. G.M. Guidi, A. Goldbeter, Bistability without hysteresis in chemical reaction systems: the case of nonconnected branches of coexisting steady states. J. Phys. Chem. 102, 7813–7820 (1998)

    Article  Google Scholar 

  37. J. Tóth, Multistationarity is neither necessary nor sufficient to oscillations. J. Math. Chem. 25, 393–397 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  38. R.J. Dickson, L.M. Perko, Bounded quadratic systems in the plane. J. Diff. Equ. 7, 251–273 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  39. G.D.F. Duff, Limit cycles and rotated vector fields. Ann. Math. 67, 15–31 (1953)

    Article  MathSciNet  MATH  Google Scholar 

  40. C.-C. Tung, Positions of limit cycles of the system dx∕dt = ∑a ik x i y k, dy∕dt = ∑b ik x i y k, 0 ≤ i + k ≤ 2. Sci. Sin. 8, 151–171 (1959)

    Google Scholar 

  41. M. Feinberg, Lectures on Chemical Reaction Networks (Delivered at the Mathematics Research Center, University of Wisconsin, Madison, 1979).

    Google Scholar 

  42. N.G. Van Kampen, Stochastic Processes in Physics and Chemistry (Elsevier, Burlington, 2007)

    MATH  Google Scholar 

  43. R. Erban, S.J. Chapman, P. Maini, A Practical Guide to Stochastic Simulations of Reaction-Diffusion Processes. Lecture Notes (2007). Available as http://arxiv.org/abs/0704.1908

  44. T. Plesa, K. Zygalakis, D.F. Anderson, R. Erban, Noise Control for DNA Computing (2017, submitted). https://arxiv.org/abs/1705.09392

  45. M. Vellela, H. Qian, A quasistationary analysis of a stochastic chemical reaction: Keizer’s paradox. Bull. Math. Biol. 69, 1727–1746 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  46. L.M. Perko, Rotated vector fields. J. Diff. Equ. 103, 127–145 (1993)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Isaac Newton Institute for Mathematical Sciences, Cambridge, for support and hospitality during the programme “Stochastic Dynamical Systems in Biology: Numerical Methods and Applications” where work on this paper was undertaken. This work was supported by EPSRC grant no EP/K032208/1. This work was partially supported by a grant from the Simons Foundation. Tomáš Vejchodský would like to acknowledge the institutional support RVO 67985840. Radek Erban would also like to thank the Royal Society for a University Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomislav Plesa .

Editor information

Editors and Affiliations

Appendices

Appendix 1: Perturbed x-Factorable Transformation

Definition 1

Consider applying an x-factorable transformation, as defined in [2], on (5), and then adding to the resulting right-hand side a zero-degree term ɛ v, with ɛ ≥ 0 and vector v = (1, 1), resulting in

$$\displaystyle\begin{array}{rcl} \frac{\mathrm{d}\mathbf{x}} {\mathrm{d}t} & =\varepsilon \mathbf{v} + \mathcal{X}(\mathbf{x})\boldsymbol{\mathcal{P}}(\mathbf{x};\,\mathbf{k})\, =\,\varepsilon \mathbf{v} + (\Psi _{\mathcal{X}}\boldsymbol{\mathcal{P}})(\mathbf{x};\,\mathbf{k}) \equiv (\Psi _{\mathcal{X}_{\varepsilon }}\boldsymbol{\mathcal{P}})(\mathbf{x};\,\mathbf{k}).&{}\end{array}$$
(20)

Then \(\Psi _{\mathcal{X}_{\varepsilon }}: \mathbb{P}_{2}(\mathbb{R}^{2};\, \mathbb{R}^{2}) \rightarrow \mathbb{P}_{3}(\mathbb{R}^{2};\, \mathbb{R}^{2})\), mapping \(\boldsymbol{\mathcal{P}}(\mathbf{x};\,\mathbf{k})\) to \((\Psi _{\mathcal{X}_{\varepsilon }}\boldsymbol{\mathcal{P}})(\mathbf{x};\,\mathbf{k})\), is called a perturbed x-factorable transformation if ɛ ≠ 0. If ɛ = 0, the transformation reduces to an (unperturbed) x-factorable transformation, \(\Psi _{\mathcal{X}}\equiv \Psi _{\mathcal{X}_{0}}\), defined in [2].

Lemma 1

\((\Psi _{\mathcal{X}_{\varepsilon }}\boldsymbol{\mathcal{P}})(\mathbf{x};\,\mathbf{k})\) from Definition 1 is a kinetic function, i.e. \((\Psi _{\mathcal{X}_{\varepsilon }}\boldsymbol{\mathcal{P}})(\mathbf{x};\,\mathbf{k}) \in \mathbb{P}_{3}^{\mathcal{K}}(\mathbb{R}_{\geq }^{2};\, \mathbb{R}^{2})\) .

Proof

\((\Psi _{\mathcal{X}}\boldsymbol{\mathcal{P}})(\mathbf{x};\,\mathbf{k})\) is a kinetic function [2]. Since, from (20), \((\Psi _{\mathcal{X}_{\varepsilon }}\boldsymbol{\mathcal{P}})(\mathbf{x};\,\mathbf{k}) =\varepsilon \mathbf{v} + (\Psi _{\mathcal{X}}\boldsymbol{\mathcal{P}})(\mathbf{x};\,\mathbf{k})\), with ɛ ≥ 0 and v = (1, 1), it follows that \((\Psi _{\mathcal{X}_{\varepsilon }}\boldsymbol{\mathcal{P}})(\mathbf{x};\,\mathbf{k})\) is kinetic as well. □

We now provide a theorem relating location, stability and type of the positive critical points of (5) and (20).

Theorem 1

Consider the ODE system (5) with positive critical points \(\mathbf{x}^{{\ast}} \in \mathbb{R}_{>}^{2}\) . Let us assume that \(\mathbf{x}^{{\ast}}\in \mathbb{R}_{>}^{2}\) is hyperbolic, and is not the degenerate case between a node and a focus, i.e. it satisfies the condition

$$\displaystyle\begin{array}{rcl} \left (\mathit{\text{tr}}\left (\nabla \boldsymbol{\mathcal{P}}(\mathbf{x}^{{\ast}};\,\mathbf{k})\right )\right )^{2} - 4\mathit{\text{det}}\left (\nabla \boldsymbol{\mathcal{P}}(\mathbf{x}^{{\ast}};\,\mathbf{k})\right )& \neq 0,&{}\end{array}$$
(21)

as well as conditions (ii) and (iii) of Theorem 3.3 in [2]. Then positivity, stability and type of the critical point \(\mathbf{x}^{{\ast}} \in \mathbb{R}_{>}^{2}\) are invariant under the perturbed x-factorable transformations \(\Psi _{\mathcal{X}_{\varepsilon }}\) , for sufficiently small ɛ ≥ 0. Assume (5) does not have boundary critical points. Consider the two-dimensional ODE system (20) with ɛ = 0, and with boundary critical points denoted \(\bar{\mathbf{x}}^{0} \in \mathbb{R}_{\geq }^{2}\) , \(\bar{\mathbf{x}}^{0} = (\bar{x}_{b,1}^{0},\bar{x}_{b,2}^{0})\) , \(\bar{x}_{b,1}^{0}\bar{x}_{b,2}^{0} = 0\) . Assume that for i ∈ {1, 2}

$$\displaystyle\begin{array}{rcl} \frac{\partial \mathcal{P}_{i}(\mathbf{\bar{x}}_{b}^{0};\,\mathbf{k})} {\partial x_{i}} & \neq 0,\,\,\,\,\,\,\,\,\,\mathit{\text{if }}\,\,\,\bar{x}_{b,i}^{0}\,\neq \,0,&{}\end{array}$$
(22)

and that for some i ∈ {1, 2}

$$\displaystyle\begin{array}{rcl} \mathcal{P}_{i}(\mathbf{\bar{x}}_{b}^{0};\,\mathbf{k})&> 0,\,\,\,\,\,\,\,\,\,\mathit{\text{if }}\,\,\,\bar{x}_{ b,i}^{0}\, =\, 0.&{}\end{array}$$
(23)

Then, the critical point \(\mathbf{\bar{x}}_{b}^{0} \in \mathbb{R}_{\geq }^{2}\) of the two-dimensional ODE system (20) with ɛ = 0 becomes the critical point \(\mathbf{\bar{x}}_{b}\notin \mathbb{R}_{\geq }^{2}\) of system (20) for sufficiently small ɛ > 0.

Proof

The critical points of (20) are solutions of the following regularly perturbed algebraic equation

$$\displaystyle\begin{array}{rcl} \varepsilon \mathbf{v} + \mathcal{X}(\mathbf{\bar{x}})\boldsymbol{\mathcal{P}}(\mathbf{\bar{x}};\,\mathbf{k})& = \mathbf{0}.&{}\end{array}$$
(24)

Let us assume \(\mathbf{\bar{x}}\) can be written as the power series

$$\displaystyle\begin{array}{rcl} \mathbf{\bar{x}}& = \mathbf{\bar{x}}^{0} +\varepsilon \mathbf{\bar{x}}^{1} + \mathcal{O}(\varepsilon ^{2}),&{}\end{array}$$
(25)

where \(\mathbf{\bar{x}}^{0} \in \mathbb{R}_{\geq }^{2}\) are the critical points of (20) with ɛ = 0. Substituting the power series (25) into (24), and using the Taylor series theorem on \(\boldsymbol{\mathcal{P}}(\mathbf{\bar{x}};\,\mathbf{k})\), so that \(\boldsymbol{\mathcal{P}}(\mathbf{\bar{x}}^{0} +\varepsilon \mathbf{\bar{x}}^{1} + \mathcal{O}(\varepsilon ^{2});\,\mathbf{k}) =\boldsymbol{ \mathcal{P}}(\mathbf{\bar{x}}^{0};\,\mathbf{k}) +\varepsilon \nabla \boldsymbol{\mathcal{P}}(\mathbf{\bar{x}}^{0};\,\mathbf{k})\mathbf{\bar{x}}^{1} + \mathcal{O}(\varepsilon ^{2})\), as well as that \(\mathcal{X}(\mathbf{\bar{x}}) = \mathcal{X}(\mathbf{\bar{x}}^{0}) +\varepsilon \mathcal{X}(\mathbf{\bar{x}}^{1}) + \mathcal{O}(\varepsilon ^{2})\), and equating terms of equal powers in ɛ, the following system of polynomial equations is obtained:

$$\displaystyle\begin{array}{rcl} & & \mathcal{O}\left (1\right ):\; \mathcal{X}(\mathbf{\bar{x}}^{0})\boldsymbol{\mathcal{P}}(\mathbf{\bar{x}}^{0};\,\mathbf{k})\, = 0, \\ & & \mathcal{O}(\varepsilon ):\; \mathcal{X}(\mathbf{\bar{x}}^{0})\nabla \boldsymbol{\mathcal{P}}(\mathbf{\bar{x}}^{0};\,\mathbf{k})\mathbf{\bar{x}}^{1} + \mathcal{X}(\mathbf{\bar{x}}^{1})\boldsymbol{\mathcal{P}}(\mathbf{\bar{x}}^{0};\,\mathbf{k})\, = -\mathbf{v}.{}\end{array}$$
(26)

Order 1 equation. The positive critical points \(\mathbf{\bar{x}}^{0} \in \mathbb{R}_{>}^{2}\) satisfy \(\boldsymbol{\mathcal{P}}(\mathbf{\bar{x}}^{0};\,\mathbf{k}) = \mathbf{0}\). Since \(\boldsymbol{\mathcal{P}}(\mathbf{x};\,\mathbf{k})\) has no boundary critical points by assumption, critical points \(\mathbf{\bar{x}}_{b}^{0} \in \mathbb{R}_{\geq }^{2}\) with \(\bar{x}_{b,i}^{0} = 0\), \(\bar{x}_{b,j}^{0}\neq 0\), \(\bar{x}_{b,1}^{0}\bar{x}_{b,2}^{0} = 0\), i, j ∈ {1, 2}, satisfy \(\mathcal{P}_{i}(\mathbf{\bar{x}}_{b}^{0};\,\mathbf{k})\neq 0\), \(\mathcal{P}_{j}(\mathbf{\bar{x}}_{b}^{0};\,\mathbf{k}) = 0\).

Order ɛ equation. Vector \(\mathbf{\bar{x}}^{1}\), corresponding to a positive \(\mathbf{\bar{x}}^{0}\), satisfies

$$\displaystyle\begin{array}{rcl} \mathcal{X}(\mathbf{\bar{x}}^{0})\nabla \boldsymbol{\mathcal{P}}(\mathbf{\bar{x}}^{0};\,\mathbf{k})\mathbf{\bar{x}}^{1}& = -\mathbf{v},& {}\\ \end{array}$$

which can be solved provided \(\mathbf{\bar{x}}^{0}\) is a hyperbolic critical point. Vector \(\mathbf{\bar{x}}_{b}^{1}\), corresponding to a nonnegative \(\mathbf{\bar{x}}_{b}^{0}\), is given by

$$\displaystyle\begin{array}{rcl} \bar{x}_{b,i}^{1} = \left \{\begin{array}{@{}l@{\quad }l@{}} -(\mathcal{P}_{i}(\mathbf{\bar{x}}_{b}^{0};\,\mathbf{k}))^{-1}, \quad &\text{if }\bar{x}_{b,i}^{0} = 0, \\ \left (\frac{\partial \mathcal{P}_{i}(\mathbf{\bar{x}}_{b}^{0};\,\mathbf{k})} {\partial x_{i}} \right )^{-1}\left ((\mathcal{P}_{j}(\mathbf{\bar{x}}_{b}^{0};\,\mathbf{k}))^{-1}\frac{\partial \mathcal{P}_{i}(\mathbf{\bar{x}}_{b}^{0};\,\mathbf{k})} {\partial x_{j}} - (\bar{x}_{b,i}^{0})^{-1}\right ),\quad &\text{if }\bar{x}_{b,i}^{0}\neq 0, \end{array} \right.& & {}\\ \end{array}$$

from which conditions (22) and (23) follow. □

Appendix 2: Bicyclic System with Large Attractors

Consider the following deterministic kinetic equations

$$\displaystyle\begin{array}{rcl} \frac{\mathrm{d}x_{1}} {\mathrm{d}t} & =& k_{1} + x_{1}(-k_{2} + k_{3}x_{1} + k_{4}x_{2} - k_{5}x_{1}x_{2}), \\ \frac{\mathrm{d}x_{2}} {\mathrm{d}t} & =& k_{6} + x_{2}(k_{7} - k_{8}x_{1} + k_{9}x_{2} + k_{10}x_{1}^{2} - k_{ 11}x_{2}^{2}),{}\end{array}$$
(27)

with the coefficients k given by

$$\displaystyle\begin{array}{rcl} k_{1}& =& 10^{-3},\;\;\;k_{ 2} = 10,\;\;\;k_{3} = 1,\;\;\;k_{4} = 1,\;\;\;k_{5} = 0.1,\;\;\;k_{6} = 10^{-3}, \\ k_{7}& =& 3.7,\;\;\;k_{8} = 1.9,\;\;\;k_{9} = 1.01,\;\;\;k_{10} = 0.1,\;\;\;k_{11} = 0.05. {}\end{array}$$
(28)

The canonical reaction network induced by system (27), involving two species s 1 and s 2 and eleven reactions r 1, r 2, , r 11 under mass-action kinetics, is given by

(29)

In Fig. 5a, we show the two stable limit cycles obtained by numerically solving (27) with parameters (28). In Fig. 5b, in addition to the limit cycles, we also show in blue a representative sample path obtained by applying the Gillespie algorithm on (29). Let us note that (27) was constructed in a similar fashion as system (12) in Sect. 3.2, using the results from [40, 46].

Fig. 5
figure 5

Panel (a) displays numerically approximated stable limit cycles L 1 and L 3 in the state-space of system (27), with parameters (28) and reactor volume V = 100. Panel (b) displays in blue a representative sample path, generated by applying the Gillespie algorithm on the underlying reaction network (29) for the same parameters as in panel (a). Also shown are two deterministic trajectories, one initiated near the limit cycle L 1, while the other near L 3. One can observe that the stochastic sample path switches between the two deterministic attractors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Plesa, T., Vejchodský, T., Erban, R. (2017). Test Models for Statistical Inference: Two-Dimensional Reaction Systems Displaying Limit Cycle Bifurcations and Bistability. In: Holcman, D. (eds) Stochastic Processes, Multiscale Modeling, and Numerical Methods for Computational Cellular Biology. Springer, Cham. https://doi.org/10.1007/978-3-319-62627-7_1

Download citation

Publish with us

Policies and ethics