Skip to main content

Magnetic Iron Oxide Particles for Theranostics

  • Chapter
  • First Online:
Biomedical Nanomaterials
  • 704 Accesses

Abstract

For many years, magnetic particles attracted a lot of interest in many fields, mainly including biomedicine. Recently, development of innovative strategies to tune the unique properties of magnetic nanoparticles for specific applications as theranostic agents has become one of the most challenging goals. This paper provides an overview of the synthesis, modification, and functionalization of magnetic nano- and microparticles. Special attention was paid to iron oxide composites used in cell separations and theranostics, such as anticancer drug delivery, diagnosis, and/or therapy of autoimmune and brain disorders. Last, but not the least, phenolic compound-modified magnetic particles were used as antioxidants or silver-containing carriers as antibacterial agents in in vitro and in vivo studies. Magnetic microparticles can be also incorporated in biosensors, exemplified by thionine-conjugated magnetic poly(carboxymethyl methacrylate-co-ethylene dimethacrylate) particles that showed higher enzymatic activity than nonmagnetic particles. Magnetic nano- and microparticles were characterized by a range of physicochemical methods, including transmission electron microscopy, dynamic light scattering, vibrating sample magnetometry, and Fourier-transform infrared spectroscopy, in terms of determination of particle morphology (size and its distribution), specific surface area, magnetic, and chemical properties. The chemical composition and crystallinity were confirmed by X-ray photoelectron spectroscopy. Moreover, the interactions between the magnetic particles and cells and/or other biological species were described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agnihotri, S. A., Mallikarjuna, N. N., & Aminabhavi, T. M. (2004). Recent advances on chitosan-based micro- and nanoparticles in drug delivery. Journal of Controlled Release, 100(1), 5–28.

    Article  Google Scholar 

  • Campos, E., Branquinho, J., Carreira, A. S., Carvalho, A., Coimbra, P., Ferreira, P., & Gil, M. H. (2013). Designing polymeric microparticles for biomedical and industrial applications. European Polymer Journal, 49(8), 2005–2021.

    Article  Google Scholar 

  • Cornell, R. M., & Schwertmann, U. (2000). The iron oxides: Structure, properties, reactions, occurrences and uses (2nd ed.). Wiley.

    Google Scholar 

  • Girija, A. R., & Balasubramanian, S. (2019). Theragnostic potentials of core/shell mesoporous silica nanostructures. Nano, 3(1), 1–40.

    Google Scholar 

  • Gupta, A. K., & Gupta, M. (2005). Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials, 26, 3995–4021.

    Article  Google Scholar 

  • Horák, D. (2020). Magnetic nano- and microparticles in life sciences and medical imaging. In S. K. Sharma & Y. Javed (Eds.), Magnetic nanoheterostructures. Springer Nature. https://doi.org/10.1007/978-3-030-39923-8_5

    Chapter  Google Scholar 

  • Horák, D., Babič, M., Macková, H., & Beneš, M. J. (2007). Preparation and properties of magnetic nano- and microsized particles for biological and environmental separations. Journal of Separation Science, 30(11), 1751–1772.

    Google Scholar 

  • Jiráková, K., Moskvin, M., Machová Urdzíková, L., Rossner, P., Elzeinová, F., Chudíčková, M., Jirák, D., Ziolkowska, N., Horák, D., Kubinová, Š., & Jendelová, P. (2020). The negative effect of magnetic nanoparticles with ascorbic acid on peritoneal macrophages. Neurochemical Research, 45, 159–170.

    Article  Google Scholar 

  • Konečná, J., Romanovská, D., Horák, D., & Trachtová, Š. (2019). Optimalization of deoxyribonucleic acid extraction using various types of magnetic particles. Chemical Papers, 73, 1247–1255.

    Article  Google Scholar 

  • Koubková, J., Müller, P., Hlídková, H., Plichta, Z., Proks, V., Vojtěšek, B., & Horák, D. (2014). Magnetic poly(glycidyl methacrylate) microspheres for protein capture. New Biotechnology, 31(5), 482–491.

    Article  Google Scholar 

  • Laurent, S., Forge, D., Port, M., Roch, A., Robic, C., van der Elst, L., & Muller, R. N. (2008). Magnetic iron oxide nanoparticles: Synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chemical Reviews, 108, 2064–2110.

    Article  Google Scholar 

  • Manko, N., Starykovych, M., Bobak, Y., Stoika, R., Richter, V., Koval, O., Lavrik, I., Horák, D., Souchelnytskyi, S., & Kit, Y. (2019). The purification and identification of human blood serum proteins with affinity to the antitumor active RL2 lactaptin using magnetic microparticles. Biomedical Chromatography, 33(11), e4647.

    Google Scholar 

  • Musielak, M., Piotrowski, I., & Suchorska, W. M. (2019). Superparamagnetic iron oxide nanoparticles (SPIONs) as a multifunctional tool in various cancer therapies. Reports of Practical Oncology and Radiotherapy, 24(4), 307–314.

    Article  Google Scholar 

  • Neuberger, T., Schöpf, B., Hofmann, H., Hofmann, M., & von Rechenberg, B. (2005). Superparamagnetic nanoparticles for biomedical applications: Possibilities and limitations of a new drug delivery system. Journal of Magnetism and Magnetic Materials, 293(1), 483–496.

    Article  Google Scholar 

  • Patsula, V., Horák, D., Kučka, J., Macková, H., Lobaz, V., Francová, P., Herynek, V., Heizer, T., Páral, P., & Šefc, L. (2019a). Synthesis and modification of uniform PEG-neridronate-modified magnetic nanoparticles determines prolonged blood circulation and biodistribution in a mouse preclinical model. Scientific Reports, 9, 10765.

    Article  Google Scholar 

  • Patsula, V., Moskvin, M., Siow, W. X., Konefal, R., Ma, Y.-H., & Horák, D. (2019b). Antioxidant polymer-modified maghemite nanoparticles. Journal of Magnetism and Magnetic Materials, 473, 517–526.

    Article  Google Scholar 

  • Patsula, V., Borisova, T., Kostiv, U., Galkin, M., Pastukhov, A., & Horák, D. (2019c). Effect of Fe3O4@SiO2 nanoparticle diameter on glutamate transport in brain nerve terminals. Nanoscience and Nanotechnology Letters, 11, 1–9.

    Article  Google Scholar 

  • Plichta, Z., Kozak, Y., Panchuk, R., Sokolova, V., Epple, M., Kobylinska, L., Jendelová, P., & Horák, D. (2018). Cytotoxicity of doxorubicin-conjugated poly[N-(2-hydroxypropyl)methacrylamide]-modified γ-Fe2O3 nanoparticles towards human tumor cells. Beilstein Journal of Nanotechnology, 9, 2533–2545.

    Google Scholar 

  • Plichta, Z., Horák, D., Mareková, D., Turnovcova, K., & Jendelová, P. (2020). Poly[N-(2-hydroxypropyl)methacrylamide]-modified magnetic γ-Fe2O3 nanoparticles conjugated with doxorubicin for glioblastoma treatment. ChemMedChem, 15, 96–104.

    Article  Google Scholar 

  • Pongrac, I. M., Dobrivojević Radmilović, M., Brkić Ahmed, L., Mlinarić, H., Regul, J., Škokić, S., Babič, M., Horák, D., Hoehn, M., & Gajović, S. (2019). D-mannose-coating of maghemite nanoparticles improved labeling of neural stem cells and allowed their visualization in the mouse brain by MRI. Cell Transplantation, 28, 553–567.

    Article  Google Scholar 

  • Šálek, P., Korecká, L., Horák, D., Petrovský, E., Kovářová, J., Metelka, R., Čadková, M., & Bílková, Z. (2011). Immunomagnetic sulfonated hypercrosslinked polystyrene microspheres for electrochemical detection of proteins. Journal of Materials Chemistry, 21(38), 14783–14792.

    Article  Google Scholar 

  • Šálek, P., Filipová, M., Horák, D., Proks, V., & Janoušková, O. (2019). Enhanced solid phase extraction of DNA using hydrophilic monodisperse poly(methacrylic acid-co-ethylene dimethacrylate) microparticles. Molecular Biology Reports, 46, 3063–3072.

    Article  Google Scholar 

  • Shatan, A. B., Venclíková, K., Zasońska, B. A., Patsula, V., Pop-Georgievski, O., Petrovský, E., & Horák, D. (2019). Antibacterial silver-conjugated magnetic nanoparticles: Design, synthesis and bactericidal effect. Pharmaceutical Research, 36, 147–159.

    Article  Google Scholar 

  • Świętek, M., Lu, Y.-C., Konefal, R., Ferreira, L. P., Cruz, M. M., Ma, Y.-H., & Horák, D. (2019). Scavenging of reactive oxygen species by phenolic compound-modified maghemite nanoparticles. Beilstein Journal of Nanotechnology, 10, 1073–1088.

    Article  Google Scholar 

  • Świętek, M., Skorokhyd, N., Černoch, P., Finiuk, N., Panchuk, R., Klyuchivska, O., Hrubý, M., Molčan, M., Berger, W., Trousil, J., Stoika, R., & Horák, D. (2020). Magnetic temperature-sensitive solid-lipid particles for targeting and killing tumor cell. Frontiers in Chemistry, 8, 205.

    Article  Google Scholar 

  • Varanda, L. C., Souza, C. G. S., Moraes, D. A., Neves, H. R., Souza Junior, J. B., Silva, M. F., Bini, R. A., Albers, R. F., Silva, T. L., & Beck Junior, W. (2019). Size and shape-controlled nanomaterials based on modified polyol and thermal decomposition approaches. A brief review. Anais da Academia Brasileira de Ciências, 91(4), e20181180.

    Article  Google Scholar 

  • Wei, H., & Wang, E. (2008). Fe3O4 magnetic nanoparticles as peroxidase mimetics and their applications in H2O2 and glucose detection. Analytical Chemistry, 80, 2250–2254.

    Article  Google Scholar 

  • Zasońska, B. A., Líšková, A., Kuricová, M., Tulinská, J., Pop-Georgievski, O., Ilavská, S., Horváthová, M., Jahnová, E., & Horák, D. (2016). Functionalized porous silica&maghemite core-shell nanoparticles for applications in medicine: Design, synthesis and immunotoxicity. Croatian Medical Journal, 57, 165–179.

    Article  Google Scholar 

  • Zasońska, B. A., Hlídková, H., Petrovský, E., Myronovskij, S., Nehrych, T., Negrych, N., Shorobura, M., Antonyuk, V., Stoika, R., Kit, Y., & Horák, D. (2018a). Monodisperse magnetic poly(glycidyl methacrylate) microspheres for isolation and determination of blood serum immunoglobulins with affinity to short form of unconventional Myo1C. Microchimica Acta, 185, 262.

    Article  Google Scholar 

  • Zasońska, B. A., Acharya, U., Pfleger, J., Humpolíček, P., Vajďák, J., Petrovský, E., Hromádková, J., Walterová, Z., & Bober, P. (2018b). Multifunctional polypyrrole@maghemite@silver composites: Synthesis, physico-chemical characterization and antibacterial properties. Chemical Papers, 72, 1789–1797.

    Article  Google Scholar 

  • Zasońska, B. A., Pustovyy, V. I., Babinskyi, A. V., Palyvoda, O. M., Chekhun, V. F., Todor, I. N., Petrovský, E., Kuzmenko, O. I., & Horák, D. (2019a). Combined antitumor effect of surface-modified superparamagnetic maghemite nanoparticles and a vitamin E derivative on experimental Walker-256 mammary gland carcinosarcoma. Journal of Magnetism and Magnetic Materials, 471, 381–387.

    Article  Google Scholar 

  • Zasońska, B. A., Šálek, P., Procházková, J., Müllerová, S., Svoboda, J., Petrovský, E., Proks, V., Horák, D., & Šafařík, I. (2019b). Peroxidase-like activity of magnetic poly(glycidyl mathacrylate-co-ethylene dimethacrylate) particles. Scientific Reports, 9, 1543.

    Article  Google Scholar 

  • Zavaleta, C., Ho, D., & Ji Chung, E. (2018). Theranostic nanoparticles for tracking and monitoring disease state. SLAS Technology, 23(3), 281–293.

    Google Scholar 

Download references

Acknowledgments

The financial support from the Czech Science Foundation (20-02177J) and the RECOOP HST Association and Cedars-Sinai Medical Center is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Horák .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zasońska, B., Horák, D. (2022). Magnetic Iron Oxide Particles for Theranostics. In: Stoika, R.S. (eds) Biomedical Nanomaterials. Springer, Cham. https://doi.org/10.1007/978-3-030-76235-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-76235-3_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-76234-6

  • Online ISBN: 978-3-030-76235-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics