Skip to main content

Advertisement

Log in

Environmental impact of a large-scale chemical elimination of Reynoutria spp. on the alluvium of the Morávka river – examination of vegetation changes in floodplain forests

  • Original Article
  • Published:
Biologia Aims and scope Submit manuscript

Abstract

An invasion of non-native plant species represents the most serious environmental problem threatening the biodiversity and changing the nature of the landscape. A chemical elimination is one of the methods used to fight neophytes. It was carried out in the study area of the Morávka River flowing beneath the Beskydy Mountains between 2007 and 2010. The elimination of Reynoutria spp. was implemented as a part of the ‘Preservation of alluvial forest habitats in the Morávka River basin’ project. The population of the invasive neophyte Reynoutria spp. was eliminated by using a combination of mechanical and chemical treatment. Roundup Biaktiv herbicide was used for the chemical elimination. We investigated the consequences of the areal chemical elimination of Reynoutria spp. on the herbaceous undergrowth of the forest of the alluvium of the Morávka River. A multivariate analysis was employed to examine responses of the spring herbaceous plant species and native and non-native summer plant species composition to the chemical treatment. The hypothesis that consequences of the chemical elimination are not reflected in the spring plant species composition, whereas the applications of the herbicide and their frequency is one of crucial factors for the variability of the summer plant species composition was confirmed. The chemical elimination affected plant species composition of the non-native plant species more significantly than the plant species composition of the native plant species. A higher frequency of herbicide application caused increased diversity of both native and non-native plant species, although more noticeably in the case of the latter ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aguilera AG, Alpert P, Dukes JS, Harrington R (2010) Impacts of the invasive plant Fallopia Japonica (Houtt.) on plant communities and ecosystem processes. Biol Invasions 12(5):1243–1252

    Article  Google Scholar 

  • Ailstock M, Norman C, Bushman P (2001) Common reed Phragmites Australis: control and effects upon biodiversity in freshwater non-tidal wetlands. Restor Ecol 9:5–49

    Article  Google Scholar 

  • Barták R, Konupková Kalousová Š, Krupová B (2010) Methods of elimination of invasive knotweed species. Moravia Silesian region, p 34 https://life-moravka.msk.cz/en/doc/kridlatka_nahled_ENG_FIN2.pdf

  • Bashtanova UB, Beckett KP, Flowers TJ (2009) Review: physiological approaches to the improvement of chemical control of Japanese knotweed (Fallopia japonica). Weed Sci 57:584–592

    Article  CAS  Google Scholar 

  • Baylis AD (2000) Why glyphosate is a global herbicide: strengths, weaknesses and prospects. Pest Manag Sci 56:299–308

    Article  CAS  Google Scholar 

  • Beerling DJ, Bailey JP, Conolly AP (2004) Fallopia japonica (Houtt.) Ronse Decraene. J Ecol 82:959–979

    Article  Google Scholar 

  • Bímová K, Mandák B, Kašparová I (2004) How does Reynoutria invasion fit the various theories of invasibility. J Veg Sci 15:495–504

    Google Scholar 

  • Boyer KE, Burdick AP (2010) Control of Lepidium Latifolium (perennial pepperweed) and recovery of native plants in tidal marshes of the San Francisco estuary. Wetl Ecol Manag 18:731–743

    Article  Google Scholar 

  • Brown RL, Peet RK (2003) Diversity and invasibility of southern Appalachian plant communities. Ecology 84:32–39

    Article  Google Scholar 

  • Busse MD, Ratcliff AW, Shestak CJ, Powers RF (2001) Glyphosate toxicity and the effects of long-term vegetation control on soil microbial communities. Soil Biol Biochem 33:1777–1789

    Article  CAS  Google Scholar 

  • Carlisle SM, Trevors JT (1988) Glyphosate in the environment. Water Air Soil Pollut 39:409–420

    CAS  Google Scholar 

  • Child L, Wade M (2000) The Japanese knotweed manual. The management and control of an invasive alien weed. Packard, Chichester, p 123

    Google Scholar 

  • Chytrý M, Pyšek P, Tichý L, Knollová I, Danihelka J (2005) Invasions by alien plants in the Czech Republic: a quantitative assessment across habitats. Preslia 77:339–354

    Google Scholar 

  • Crawley MJ (1987) What makes a community invasible? In: Gray AJ, Crawley MJ, Edwards PJ (eds) Colonisation, succession and stability. Blackwell Sciences Publications, Oxford, pp 429–453

    Google Scholar 

  • Dassonville N, Vanderhoeven S, Gruber W, Meerts P (2007) Invasion by Fallopia Japonica increases topsoil mineral nutrient concentrations. Ecoscience 14(2):230–240

    Article  Google Scholar 

  • Décamps H, Pinay G, Naiman RJ, Petts GE, McClain ME, Hillbricht-Ilkowska A, Hanley TA, Holmes RM, Quinn J, Gibert J, Planty-Tabacchi AM, Schiemer F, Tabacchi E, Zalewski M (2004) Riparian zones: where biogeochemistry meets biodiversity in management practice. Pol J Ecol 52:3–18

    Google Scholar 

  • Delbart E, Pieret N, Mahy G (2010) Les trois principales plantes exotiques envahissantes le long des berges des cours d’eau et plans d’eau en Re’gion wallonne: description et conseils de gestions me’canique et chimique. Gembloux Agro-Bio Tech – Service Pulbic de Wallonie, pp 75

  • Delbart E, Mahy G, Weickmans B, Henriet F, Crémer S, Pieret N, Vanderhoeven S, Monty A (2012) Can land managers control Japanese knotweed? Lessons from control tests in Belgium. Environ Manag 50:1089–1097

    Article  Google Scholar 

  • DeMeester JE, Richter D dB (2010) Restoring restoration: removal of the invasive plant Microstegium Vimineum from a North Carolina wetland. Biol Invasions 12:781–793

    Article  Google Scholar 

  • Duke SO, Powles SB (2008) Glyphosate: Aonce-in-a-century herbicide. Pest Manag Sci 64:319–325

    Article  CAS  PubMed  Google Scholar 

  • Fan P, Hostettmann K, Lou H (2010) Allelochemicals of the invasive neophyte Polygonum cuspidatum Sieb. & Zucc. (Polygonaceae). Chemoecology 20:223–227

    Article  CAS  Google Scholar 

  • Ford S. 2004. Cut and inject herbicide control of Fallopia japonica at Rocky Valley, Cornwall, England Conserv Evi 1: 1–2

  • Forman J, Kesseli RV (2003) Sexual reproduction in the invasive species Fallopia japonica (Polygonaceae). Am J Bot 90:586–592

    Article  PubMed  Google Scholar 

  • Gerber E, Krebs C, Murrell C, Moretti M, Rocklin R, Schaffner U (2008) Exotic invasive knotweeds (Fallopia spp.) negatively affect native plant and invertebrate assemblages in European riparian habitats. Biol Conserv 141:646–654

    Article  Google Scholar 

  • Gimsing AL, Borggaard OK, Bang M (2004) Influence of soil composition on adsorption of glyphosate and phosphate by contrasting Danish surface soils. Eur J Soil Sci 55:183–191

    Article  CAS  Google Scholar 

  • Hajzlerová L, Reif J (2014) Bird species richness and abundance in riparian vegetation invaded by exotic Reynoutria spp. Biologia 69:247–253

    Article  Google Scholar 

  • Helander M, Saloniemi I, Saikkonen K (2012) Glyphosate in northern ecosystems. Trends Plant Sci 17(10):569–574

    Article  CAS  PubMed  Google Scholar 

  • Herrera AM, Dudley TL (2003) Reduction of riparian arthropod abundance and diversity as a consequence of giant reed (Arundo donax) invasion. Biol Invas 5:167–177

    Article  Google Scholar 

  • Hladyz S, Gessner MO, Giller PS, Pozo J (2009) Resource quality and stoichiometric constraints on stream ecosystem functioning. Freshw Biol 54:957–970

    Article  CAS  Google Scholar 

  • Hollingsworth ML, Bailey JP (2000) Evidence for massive clonal growth in the invasive weed Fallopia Japonica (Japanese knotweed). Bot J Linn Soc 133(4):463–472

    Article  Google Scholar 

  • Inoue M, Nishimura H, Li HH, Mizutani J (1992) Allelochemicals from Polygonum sachalinense Fr. Schm. (Polygonaceae). J Chem Ecol 18:1833–1840

    Article  CAS  PubMed  Google Scholar 

  • Kay S (1995) Efficacy of wipe-on applications of glyphosate and imazapyr on common reed in aquatic sites. J Aquat Plant Manag 33:25–26

    Google Scholar 

  • Keane RM, Crawley MJ (2002) Exotic plant invasions and the enemy release hypothesis. Trends Evol Ecol 17:164–170

    Article  Google Scholar 

  • Kotyza T (2010) Preservation of alluvial forest habitats in the Morávka river basin. http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n_proj_id=3144&docType=pdf. Pp 30

  • Kubát K, Hrouda L, Chrtek JJ, Kaplan Z, Kirschner J, Štěpánek J (eds) (2002) Klíč ke květeně České republiky. Academia, Praha

    Google Scholar 

  • Lacina J, Halas P, Švec P, Martinková M (2010) Monitoring vlivů likvidace křídlatky (Reynoutria spp.) v povodí řeky Morávky. Část B (biota). Závěrečná zpráva za výtkumné období 2007–2010, pp 69

  • Lautenschlager RA, Sullivan TP (2004) Improving research into effects of forest herbicide use on biota in northern ecosystems. Wildlife Soc. B 32(4):1061–1070

    Article  Google Scholar 

  • Levine JM, D’Antonio CM (1999) Elton revisited: a review of evidence linking diversity and invasibility. Oikos 87:15–26

    Article  Google Scholar 

  • Lonsdale WM (1999) Global patterns of plant invasion and the concept of invasibility. Ecology 80:1522–1536

    Article  Google Scholar 

  • Maděra P, Řepka R, Šebesta J, Koutecký T, Klimánek M (2013) Vascular plant biodiversity of floodplain forest geobiocoenosis in lower Morava river basin (forest district Tvrdonice), Czech Republic. J Lands Ecol 6(2):34–64

    Google Scholar 

  • Maerz JC, Blossey B, Nuzzo V (2005) Green frogs show reduced foraging success in habitat invaded by Japanese knotweed. Biodivers Conserv 14:2901–2911

    Article  Google Scholar 

  • Major W, Grue C, Grassley J, Conquest LL (2003) Mechanical and chemical control of smooth cordgrass in Willapa Bay, Washington. J Aquat Plant Manag 41:6–12

    Google Scholar 

  • Manchester S, Bullock J (2000) The impacts of non-native species on UK biodiversity and the effectiveness of control. J Appl Ecol 37:845–864

    Article  Google Scholar 

  • Mandák B, Pyšek P, Bímová K (2004) History of the invasion and distribution of Reynoutria taxa in the Czech Republic: a hybrid spreading faster than its parents. Preslia 76:15–64

    Google Scholar 

  • Maurel N, Salmon S, Ponge J-F, Machon N, Moret J, Muratet A (2010) Does the invasive species Reynoutria japonica have an impact on soil and flora in urban wastelands? Biol Invasions 12:1709–1719

    Article  Google Scholar 

  • Mikyška R, Deyl M, Holub J, Husová M, Moravec J, Neuhäusl R, Neuhäuslová-Novotná Z (1968) Geobotanická mapa ČSSR I. České země. Academia, Praha

  • Miller T (2005) Evaluation of knotweed control projects in southwestern Washington. https://agr.wa.gov/plantsinsects/Weeds/Knotweed/docs/KnotweedEvaluationSWWA.pdf

  • Miller KV, Miller JH (2004) Forestry herbicide influences on biodiversity and wildlife habitat in southern forests. Wildlife Soc. B 32(4):1049–1060

    Article  Google Scholar 

  • Mlíkovský J, Stýblo P (eds) (2006) Nepůvodní druhy fauny a flóry České republiky. Praha, ČSOP, p 496

    Google Scholar 

  • Murrell C, Gerber E, Krebs C, Parepa M, Schaffner U, Bossdorf O (2011) Invasive knotweed affects native plants through allelopathy. Am J Bot 98(1):38–43

    Article  PubMed  Google Scholar 

  • Neuhäuslová Z, Moravec J, Chytrý M, Sádlo J, Rybníček K, Kolbek J, Jirásek J (1997) Mapa potenciální přirozené vegetace České republiky 1: 500 000. Botanický ústav AV ČR, Průhonice

    Google Scholar 

  • Nguyen DB, Rose MT, Rose TJ, Morris SG, Van Zwieten L (2016) Impact of glyphosate on soil microbial biomass and respiration: a meta-analysis. Soil Biol Biochem 92:50–57

    Article  CAS  Google Scholar 

  • Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, Simpson LG, Solymos P, Stevens MHH, Wagner H (2016) Package ‘vegan’: community ecology package. R package version 2.3–4. https://CRAN.R-project.org/package=vegan

    Google Scholar 

  • Patten K (2004) Comparison of chemical and mechanical control efforts for invasive Spartina in Willipa Bay, WA. In: Proceedings of the 3rd international conference on invasive Spartina, San Francisco

  • Prach K, Hobbs RJ (2008) Spontaneous succession versus technical reclamation in the restoration of disturbed sites. Restor Ecol 16:363–366

    Article  Google Scholar 

  • Price EAC, Gamble R, Williams GG, Marschall C (2002) Seasonal patterns of partitioning and remobilization of 14C in the invasive rhizomatous perennial Japanese knotweed (Fallopia japonica (Houtt.) Ronse Decraene). Evol Ecol 15:347–362

    Article  Google Scholar 

  • Pyšek P, Prach K, Mandák B (1998) Invasion of alien plants into habitats of central European landscape: an historical pattern. In: Starfinger U, Edwards K, Kowarik I, Williamson M (eds) Ecological mechanism and human responses. Backhuys Publishers, Leiden, pp 23–32

    Google Scholar 

  • Pyšek P, Sádlo J, Mandák B (2002) Catalogue of alien plants of the Czech Republic. Preslia 74(2):97–186

    Google Scholar 

  • R Core Team (2016) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna https://www.R-project.org/

    Google Scholar 

  • Randuška D, Vorel J, Plíva K (1986) Fytocenológia a lesnícka typológia. Príroda, Bratislava

    Google Scholar 

  • Rejmánek M (1989) Invasibility of plant communities. In: Drake JA, Mooney HA, di Castri F, Groves RH, Kruger FJ, Rejmánek M, Williamson M (eds) Biological invasions: a global perspective. John Wiley and Sons, Chichester, pp 369–388

    Google Scholar 

  • Rejmánek M (1996) Species richness and resistance to invasions. In: Orians GH, Dirzo R, Cushman JH (eds) Diversity and processes in tropical forest ecosystems. Springer-Verlag, Berlin, pp 153–172

    Chapter  Google Scholar 

  • Řepka R, Šebesta J, Maděra P, Vahalík P (2015) Comparison of the floodplain forest floristic composition of two riparian corridors: plant species richness, alien plant species and the effect of water regime changes. Biologia 70(2):208–217

    Google Scholar 

  • Richardson DM, Holmes PM, Esler KJ, Galatowitsch SM, Stromberg JC, Kirkman SP, Pyšek P, Hobbs RJ (2007) Riparian vegetation: degradation, alien plant invasions and restoration prospects. Divers Distrib 13:126–139

    Article  Google Scholar 

  • Samways MJ, Caldwell PM, Osborn R (1996) Ground-living invertebrate assemblages in native, planted and invasive vegetation in South Africa. Agric Ecosyst Environ 59:19–32

    Article  Google Scholar 

  • Santos JI, Amaral CL, Alves PLC, Gasparino EC (2016) Can light intensity influence the tolerance of Synedrellopsis Grisebachii to glyphosate? Weed Biol Manag 16:3–15

    Article  CAS  Google Scholar 

  • Scheiman DM, Bollinger EK, Johnson DH (2003) Effects of leafy spurge infestation on grassland birds. J Wildlife Manage 67:115–121

    Article  Google Scholar 

  • Shepard JP, Creighton J, Duzan H (2004) Forestry herbicides in the United States: an overview. Wildlife Soc B 32:1020–1027

    Article  Google Scholar 

  • Siemens TJ, Blossey B (2007) An evaluation mechanisms preventing growth and survival of two native species in invasive bohemian knotweed (Fallopia × bohemica, Polygonaceae). Am J Bot 94:776–783

    Article  PubMed  Google Scholar 

  • Spenst R (2006) The biology and ecology of Lepidium latifolium in the San Francisco estuary and their implications for eradication of this invasive weed. University of California, Davis, Dissertation

    Google Scholar 

  • Stohlgren TJ, Schell LD, Rimar KA, Otsuki Y, Lee M, Kalkhan MA, Villa CA (2002) Assesing vulnerability to invasion by non-native plant species at multiple spatial scales. Environ Manag 29:566–577

    Article  Google Scholar 

  • Strgulc KS, Dolenc KJ (2015) Sexual reproduction of knotweed (Fallopia sect. Reynoutria) in Slovenia. Preslia 87:17–30

    Google Scholar 

  • Švec P (2008) Application of phytosociological survey and GPS mapping in assessment of the elimination effects of invasive neophytes in the Morávka river catchment. In: Hana Svatoňová et al., geography in Czechia and Slovakia. Masaryk University, Brno, pp 123–130

    Google Scholar 

  • Talpa F (1948) Cizí hosté z říše rostlin v kraji pobeskydském. Ostrava: Sborník Přírodovědecké společnosti v Ostravě. Ročník IX. (1936–1946), pp 48–51

  • Tatum VL (2004) Toxicity, transport, and fate of forest herbicides. Wildl Soc Bul 32:1042–1048

    Article  Google Scholar 

  • ter Braak CJF, Šmilauer P (2005) CANOCO reference manual and CanoDraw for windows user’s guide. Software for canonical community ordination (version 4.5). Biometris, Wageningen and České Budějovice

    Google Scholar 

  • Topp W, Kappes H, Rogers F (2008) Response of ground-dwelling beetle (Coleoptera) assemblages to giant knotweed (Reynoutria spp.) invasion. Biol Invasions 10:381–390

    Article  Google Scholar 

  • Urgenson LS, Reichard SH, Halpern CB (2009) Community and ecosystem consequences of giant knotweed (Polygonum Sachalinense) invasion into riparian forests of western Washington, USA. Biol Conserv 142(7):1536–1541

    Article  Google Scholar 

  • Vanderhoeven S, Dassonville N, Meerts P (2005) Increased topsoil mineral nutrient concentrations under exotic invasive plants in Belgium. Plant Soil 275(1):169–179

    Article  CAS  Google Scholar 

  • Vrchotová N, Šerá B (2008) Allelopathic properties of knotweed rhizome extracts. Plant Soil Environ 54:301–303

    Article  Google Scholar 

  • Ward JS, Worthley TE, Williams SC (2009) Controlling Japanese barberry (Berberis Thunbergii DC) in southern New England. For Ecol Manag 257:561–566

    Article  Google Scholar 

  • Westhoff V, van der Maarel E (1978) The Braun-Blanquet approach. In: Whittaker RH (ed) Classification of plant communities. W. Junk, The Hague, pp 289–399

    Google Scholar 

  • Williamson M (1996) Biological invasions. Chapman and Hall, London, p 244

    Google Scholar 

  • Woodburn A (2000) Glyphosate: production, pricing and use worldwide. Pest Manag Sci 56:309–312

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The article was funded by project no. UGN-S-RVO: 68145535.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petr Halas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Halas, P., Švec, P., Lacina, J. et al. Environmental impact of a large-scale chemical elimination of Reynoutria spp. on the alluvium of the Morávka river – examination of vegetation changes in floodplain forests. Biologia 73, 9–20 (2018). https://doi.org/10.2478/s11756-018-0007-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11756-018-0007-8

Keywords

Navigation