Skip to main content
Log in

A comparison of approaches for the construction of reduced basis for stochastic Galerkin matrix equations

  • Published:
Applications of Mathematics Aims and scope Submit manuscript

Abstract

We examine different approaches to an efficient solution of the stochastic Galerkin (SG) matrix equations coming from the Darcy flow problem with different, uncertain coefficients in apriori known subdomains. The solution of the SG system of equations is usually a very challenging task. A relatively new approach to the solution of the SG matrix equations is the reduced basis (RB) solver, which looks for a low-rank representation of the solution. The construction of the RB is usually done iteratively and consists of multiple solutions of systems of equations. We examine multiple approaches and their modifications to the construction of the RB, namely the reduced rational Krylov subspace method and Monte Carlo sampling approach. We also aim at speeding up the process using the deflated conjugate gradients (DCG). We test and compare these methods on a set of problems with a varying random behavior of the material on subdomains as well as different geometries of subdomains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Babuška, F. Nobile, R. Tempone: A stochastic collocation method for elliptic partial differential equations with random input data. SIAM J. Numer. Anal. 45 (2007), 1005–1034.

    Article  MathSciNet  MATH  Google Scholar 

  2. I. Babuška, R. Tempone, G. E. Zouraris: Galerkin finite element approximations of stochastic elliptic partial differential equations. SIAM J. Numer. Anal. 42 (2004), 800–825.

    Article  MathSciNet  MATH  Google Scholar 

  3. J. Ballani, L. Grasedyck: A projection method to solve linear systems in tensor format. Numer. Linear Algebra Appl. 20 (2013), 27–43.

    Article  MathSciNet  MATH  Google Scholar 

  4. A. Barth, C. Schwab, N. Zollinger: Multi-level Monte Carlo finite element method for elliptic PDEs with stochastic coefficients. Numer. Math. 119 (2011), 123–161.

    Article  MathSciNet  MATH  Google Scholar 

  5. P. Benner, A. Onwunta, M. Stoll: Low-rank solution of unsteady diffusion equations with stochastic coefficients. SIAM/ASA J. Uncertain. Quantif. 3 (2015), 622–649.

    Article  MathSciNet  MATH  Google Scholar 

  6. M. Béreš: An efficient reduced basis construction for stochastic Galerkin matrix equations using deflated conjugate gradients. AETA 2018-Recent Advances in Electrical Engineering and Related Sciences: Theory and Application (I. Zelinka et al., eds.). Lecture Notes in Electrical Engineering 554, Springer, Cham, 2019, pp. 175–184. doi

    Google Scholar 

  7. M. Béreš, S. Domesová: The stochastic Galerkin method for Darcy flow problem with log-normal random field coefficients. Advances in Electrical and Electronic Engineering 15 (2017), 13 pages. doi

    Article  Google Scholar 

  8. A. Bespalov, C. E. Powell, D. Silvester: Energy norm a posteriori error estimation for parametric operator equations. SIAM J. Sci. Comput. 36 (2014), A339–A363.

    Article  MathSciNet  MATH  Google Scholar 

  9. A. Bespalov, D. Silvester: Efficient adaptive stochastic Galerkin methods for parametric operator equations. SIAM J. Sci. Comput. 38 (2016), A2118–A2140.

    Article  MathSciNet  MATH  Google Scholar 

  10. R.E. Caflisch: Monte Carlo and quasi-Monte Carlo methods. Acta Numerica 7 (1998), 1–49.

    Article  MathSciNet  MATH  Google Scholar 

  11. C. S. Chen, Y.C. Hon, R.A. Schaback: Scientific Computing with Radial Basis Functions. Department of Mathematics, University of Southern Mississippi, Hattiesburg, 2005.

    Google Scholar 

  12. Y. Chen, J. Jiang, A. Narayan: A robust error estimator and a residual-free error indicator for reduced basis methods. Comput. Math. Appl. 77 (2019), 1963–1979. MR doi

    Article  MathSciNet  Google Scholar 

  13. P. Chen, A. Quarteroni, G. Rozza: Comparison between reduced basis and stochastic collocation methods for elliptic problems. J. Sci. Comput. 59 (2014), 187–216.

    Article  MathSciNet  MATH  Google Scholar 

  14. P. Chen, A. Quarteroni, G. Rozza: Reduced basis methods for uncertainty quantification. SIAM/ASA J. Uncertain. Quantif. 5 (2017), 813–869.

    Article  MathSciNet  MATH  Google Scholar 

  15. G. Christakos: Random Field Models in Earth Sciences. Academic Press, San Diego, 1992. doi

    MATH  Google Scholar 

  16. K.A. Cliffe, M.B. Giles, R. Scheichl, A. L. Teckentrup: Multilevel Monte Carlo methods and applications to elliptic PDEs with random coefficients. Comput. Vis. Sci. 14 (2011), 3–15.

    Article  MathSciNet  MATH  Google Scholar 

  17. A. J. Crowder, C. E. Powell: CBS constants & their role in error estimation for stochastic Galerkin finite element methods. J. Sci. Comput. 77 (2018), 1030–1054.

    Article  MathSciNet  MATH  Google Scholar 

  18. S. Dolgov, B.N. Khoromskij, A. Litvinenko, H.G. Matthies: Polynomial chaos expansion of random coefficients and the solution of stochastic partial differential equations in the tensor train format. SIAM/ASA J. Uncertain. Quantif. 3 (2015), 1109–1135.

    MATH  Google Scholar 

  19. H.C. Elman, T. Su: A low-rank multigrid method for the stochastic steady-state diffusion problem. SIAM J. Matrix Anal. Appl. 39 (2018), 492–509.

    Article  MathSciNet  MATH  Google Scholar 

  20. R.A. Freeze: A stochastic-conceptual analysis of one-dimensional groundwater flow in nonuniform homogeneous media. Water Resources Research 11 (1975), 725–741.

    Article  Google Scholar 

  21. C. J. Gittelson: Stochastic Galerkin discretization of the log-normal isotropic diffusion problem. Math. Models Methods Appl. Sci. 20 (2010), 237–263.

    Article  MathSciNet  MATH  Google Scholar 

  22. S. Güttel: Rational Krylov approximation of matrix functions: Numerical methods and optimal pole selection. GAMM-Mitt. 36 (2013), 8–31.

    Article  MathSciNet  MATH  Google Scholar 

  23. F. Heiss, V. Winschel: Likelihood approximation by numerical integration on sparse grids. J. Econom. 144 (2008), 62–80.

    Article  MathSciNet  MATH  Google Scholar 

  24. R. J. Hoeksema, P.K. Kitanidis: Analysis of the spatial structure of properties of selected aquifers. Water Resources Research 21 (1985), 563–572. doi

    Article  Google Scholar 

  25. G. Karypis, V. Kumar: A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM J. Sci. Comput. 20 (1998), 359–392.

    Article  MathSciNet  MATH  Google Scholar 

  26. A. Keese, H.G. Mathhies: Adaptivity and sensitivity for stochastic problems. Computational Stochastic Mechanics 4 (P.D. Spanos et al., eds.). Millpress, Rotterdam, 2003, pp. 311–316.

    Google Scholar 

  27. B.N. Khoromskij, C. Schwab: Tensor-structured Galerkin approximation of parametric and stochastic elliptic PDEs. SIAM J. Sci. Comput. 33 (2011), 364–385.

    Article  MathSciNet  MATH  Google Scholar 

  28. D.P. Kroese, T. Taimre, Z. I. Botev: Handbook for Monte Carlo Methods. Wiley Series in Probability and Statistics, Wiley, Hoboken, 2011. zbl doi

    Book  MATH  Google Scholar 

  29. K. Lee, H.C. Elman: A preconditioned low-rank projection method with a rankreduction scheme for stochastic partial differential equations. SIAM J. Sci. Comput. 39 (2017), S828–S850.

    Article  MATH  Google Scholar 

  30. G. J. Lord, C.E. Powell, T. Shardlow: An Introduction to Computational Stochastic PDEs. Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge, 2014.

    Book  MATH  Google Scholar 

  31. L. Mathelin, O. Le Maıtre: Dual-based a posteriori error estimate for stochastic finite element methods. Commun. Appl. Math. Comput. Sci. 2 (2007), 83–115.

    Article  MathSciNet  MATH  Google Scholar 

  32. H.G. Matthies, E. Zander: Solving stochastic systems with low-rank tensor compression. Linear Algebra Appl. 436 (2012), 3819–3838.

    Article  MathSciNet  MATH  Google Scholar 

  33. P.H. Nelson: Permeability-porosity relationships in sedimentary rocks. Log Analyst 35 (1994), 38–62.

    Google Scholar 

  34. C. J. Newsum, C.E. Powell: Efficient reduced basis methods for saddle point problems with applications in groundwater flow. SIAM/ASA J. Uncertain. Quantif. 5 (2017), 1248–1278.

    Article  MathSciNet  MATH  Google Scholar 

  35. F. Nobile, R. Tempone, C.G. Webster: A sparse grid stochastic collocation method for partial differential equations with random input data. SIAM J. Numer. Anal. 46 (2008), 2309–2345.

    Article  MathSciNet  MATH  Google Scholar 

  36. A. Nouy: A generalized spectral decomposition technique to solve a class of linear stochastic partial differential equations. Comput. Methods Appl. Mech. Eng. 196 (2007), 4521–4537.

    Article  MathSciNet  MATH  Google Scholar 

  37. A. Nouy: Construction of generalized spectral bases for the approximate resolution of stochastic problems. Mecanique et Industries 8 (2007), 283–288. doi

    Article  Google Scholar 

  38. A. Nouy: Generalized spectral decomposition method for solving stochastic finite element equations: Invariant subspace problem and dedicated algorithms. Comput. Methods Appl. Mech. Eng. 197 (2008), 4718–4736.

    Article  MathSciNet  MATH  Google Scholar 

  39. A. Nouy: Recent developments in spectral stochastic methods for the numerical solution of stochastic partial differential equations. Arch. Comput. Methods Eng. 16 (2009), 251–285.

    Article  MathSciNet  MATH  Google Scholar 

  40. A. Nouy: Proper generalized decompositions and separated representations for the numerical solution of high dimensional stochastic problems. Arch. Comput. Methods Eng. 17 (2010), 403–434.

    Article  MathSciNet  MATH  Google Scholar 

  41. A. Nouy, O. P. Le Maitre: Generalized spectral decomposition for stochastic nonlinear problems. J. Comput. Phys. 228 (2009), 202–235.

    Article  MathSciNet  MATH  Google Scholar 

  42. K. Petras: Smolyak cubature of given polynomial degree with few nodes for increasing dimension. Numer. Math. 93 (2003), 729–753.

    Article  MathSciNet  MATH  Google Scholar 

  43. M. J. D. Powell: Radial basis function methods for interpolation to functions of many variables. HERCMA 2001. Proceedings of the 5th Hellenic-European Conference on Computer Mathematics and Its Applications (E.A. Lipitakis, ed.). LEA, Athens, 2002, pp. 2–24. zbl

  44. C.E. Powell, H.C. Elman: Block-diagonal preconditioning for spectral stochastic finiteelement systems. IMA J. Numer. Anal. 29 (2009), 350–375.

    Article  MathSciNet  MATH  Google Scholar 

  45. C.E. Powell, D. Silvester, V. Simoncini: An efficient reduced basis solver for stochastic Galerkin matrix equations. SIAM J. Sci. Comput. 39 (2017), A141–A163.

  46. I. Pultarová: Adaptive algorithm for stochastic Galerkin method. Appl. Math., Praha 60 (2015), 551–571.

    Article  MathSciNet  MATH  Google Scholar 

  47. I. Pultarová: Hierarchical preconditioning for the stochastic Galerkin method: Upper bounds to the strengthened CBS constants. Comput. Math. Appl. 71 (2016), 949–964. MR doi

    Article  MathSciNet  Google Scholar 

  48. C.P. Robert, G. Casella: Monte Carlo Statistical Methods. Springer Texts in Statistics, Springer, New York, 2004.

    Book  Google Scholar 

  49. Y. Saad, M. Yeung, J. Erhel, F. Guyomarc’h: A deflated version of the conjugate gradient algorithm. SIAM J. Sci. Comput. 21 (2000), 1909–1926.

    Article  MathSciNet  MATH  Google Scholar 

  50. T. J. Santner, B. J. Williams, W. I. Notz: The Design and Analysis of Computer Experiments. Springer Series in Statistics, Springer, New York, 2003.

    Book  MATH  Google Scholar 

  51. V. Simoncini: Analysis of the rational Krylov subspace projection method for large-scale algebraic Riccati equations. SIAM J. Matrix Anal. Appl. 37 (2016), 1655–1674.

    Article  MathSciNet  MATH  Google Scholar 

  52. B. Sousedík, R.G. Ghanem, E.T. Phipps: Hierarchical Schur complement preconditioner for the stochastic Galerkin finite element methods. Numer. Linear Algebra Appl. 21 (2014), 136–151.

    Article  MathSciNet  MATH  Google Scholar 

  53. E. Ullmann: A Kronecker product preconditioner for stochastic Galerkin finite element discretizations. SIAM J. Sci. Comput. 32 (2010), 923–946.

    Article  MathSciNet  MATH  Google Scholar 

  54. S. Ullmann, J. Lang: Stochastic Galerkin reduced basis methods for parametrized linear elliptic PDEs. Available at https://arxiv.org/abs/1812.08519 (2018), 20 pages.

  55. X. Wan, G. E. Karniadakis: An adaptive multi-element generalized polynomial chaos method for stochastic differential equations. J. Comput. Phys. 209 (2005), 617–642.

    Article  MathSciNet  MATH  Google Scholar 

  56. D. Xiu: Numerical Methods for Stochastic Computations. A Spectral Method Approach. Princeton University Press, Princeton, 2010

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michal Béreš.

Additional information

This work was supported by The Ministry of Education, Youth and Sports from the National Programme of Sustainability (NPU II) project IT4Innovations excellence in science—LQ1602. This works was also supported by TACR, project no. TK02010118.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Béreš, M. A comparison of approaches for the construction of reduced basis for stochastic Galerkin matrix equations. Appl Math 65, 191–225 (2020). https://doi.org/10.21136/AM.2020.0257-19

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.21136/AM.2020.0257-19

Keywords

MSC 2020

Navigation