Skip to main content
Log in

Biochars and their magnetic derivatives as enzyme-like catalysts mimicking peroxidases

  • Original Article
  • Published:
Biochar Aims and scope Submit manuscript

Abstract

Various materials have been extensively investigated to mimic the structures and functions of natural enzymes. We describe the discovery of a new catalytic property in the group of biochar-based carbonaceous materials, which are usually produced during biowaste thermal processing under specific conditions. The tested biochars exhibited peroxidase-like catalytic activity. Biomaterial feedstock, pyrolysis temperature, size of resulting biochar particles or biochar modification (e.g., magnetic particles deposition) influenced the peroxidase-like activity. Catalytic activity was measured with the chromogenic organic substrates N,N-diethyl-p-phenylenediamine (DPD) or 3,3′,5,5′-tetramethylbenzidine (TMB), in the presence of hydrogen peroxide. Magnetic biochar composite was studied as a complementary material, in which the presence of iron oxide particles enhances catalytic activity and enables smart magnetic separation of catalyst even from complex mixtures. The activity of the selected biochar had an optimum at pH 4 and temperature 32 °C; biochar catalyst can be reused ten times without the loss of activity. Using DPD as a substrate, Km values for native wood chip biochar and its magnetic derivative were 220 ± 5 μmol L−1 and 690 ± 80 μmol L−1, respectively, while Vmax values were 10.1 ± 0.3 μmol L−1 min−1 and 16.1 ± 0.4 μmol L−1 min−1, respectively. Biochar catalytic activity enabled the decolorization of crystal violet both in the model solution and the fish pond water containing suspended solids and dissolved organic matter. The observed biochar enzyme mimetic activity can thus find interesting applications in environmental technology for the degradation of selected xenobiotics. In general, this property predestines the low-cost biochar to be a perspective supplement or even substitution of common peroxidases in practical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

A551 :

Absorbance values at wavelength 551 nm

AA:

Ascorbic acid

BCH:

Biochar

(M)BC1-3, LIM1-3, OL1-8, MC, IND:

various types of biochars (detailed info. in Table 1)

Table 1 Overview of biochar samples used for experiments
C:

Catalyst (BCH or IOP)

COD:

Chemical oxygen demand

CNTs:

Carbon nanotubes (SW—single walled)

CS:

Chromogenic substrate (DPD or TMB)

CV:

Crystal violet

CVM:

Cyclic voltammetry measurement

DPD:

N,N-diethyl-p-phenylenediamine

GCE:

Glassy carbon electrode

GO:

Graphene oxide (r—reduced)

GQDs:

Graphene quantum dots

HRP:

Horseradish peroxidase

IOP:

Magnetic iron oxide particles prepared by microwave-assisted synthesis

K m :

Michaelis constant

NPs:

Nanoparticles

NRs:

Nanorods

TMB:

3,3′,5,5′-tetramethylbenzidine

V max :

Maximal reaction velocity

WK, IM:

biochar suppliers (detailed info. in Table 1)

References

  • Asada T, Oikawa K, Kawata K, Ishihara S, Iyobe T, Yamada A (2004) Study of removal effect of bisphenol A and beta-estradiol by porous carbon. J Health Sci 50(6):588–593

    CAS  Google Scholar 

  • Astruc D, Lu F, Aranzaes JR (2005) Nanoparticles as recyclable catalysts: the frontier between homogeneous and heterogeneous catalysis. Angew Chem-Int Ed 44:7852–7872

    CAS  Google Scholar 

  • Bachmann HJ, Bucheli TD, Dieguez-Alonso A, Fabbri D, Knicker H, Schmidt HP, Ulbricht A, Becker R, Buscaroli A, Buerge D, Cross A, Dickinson D, Enders A, Esteves VI, Evangelou MWH, Fellet G, Friedrich K, Guerrero GG, Glaser B, Hanke UM, Hanley K, Hilber I, Kalderis D, Leifeld J, Masek O, Mumme J, Carmona MP, Pereira RC, Rees F, Rombola AG, de la Rosa JM, Sakrabani R, Sohi S, Soja G, Valagussa M, Verheijen F, Zehetner F (2016) Toward the standardization of biochar analysis: the COST Action TD1107 interlaboratory comparison. J Agric Food Chem 64(2):513–527

    CAS  Google Scholar 

  • Bader H, Sturzenegger V, Hoigne J (1988) Photometric method for the determination of low concentrations of hydrogen peroxide by the peroxidase catalyzed oxidation of N,N-diethyl-p-phenylenediamine (DPD). Water Res 22(9):1109–1115

    CAS  Google Scholar 

  • Bansal N, Kanwar SS (2013) Peroxidase(s) in environment protection. Sci World J 2013:9 (Article ID 714639)

    Google Scholar 

  • Bhunia A, Durani S, Wangikar PP (2001) Horseradish peroxidase catalyzed degradation of industrially important dyes. Biotechnol Bioeng 72(5):562–567

    CAS  Google Scholar 

  • Bilal M, Asgher M, Parra-Saldivar R, Hu H, Wang W, Zhang X, Iqbal HMN (2017) Immobilized ligninolytic enzymes: an innovative and environmental responsive technology to tackle dye-based industrial pollutants—a review. Sci Total Environ 576:646–659

    CAS  Google Scholar 

  • Cai X, Tanner EEL, Lin C, Ngamchuea K, Foord JS, Compton RG (2018) The mechanism of electrochemical reduction of hydrogen peroxide on silver nanoparticles. Phys Chem Chem Phys 20:1608–1614

    CAS  Google Scholar 

  • Chang Q, Deng K, Zhu L, Jiang G, Yu C, Tang H (2009) Determination of hydrogen peroxide with the aid of peroxidase-like Fe3O4 magnetic nanoparticles as the catalyst. Microchim Acta 165(3):299

    CAS  Google Scholar 

  • Chen W, Chen J, Feng Y-B, Hong L, Chen Q-Y, Wu L-F, Lin X-H, Xia X-H (2012) Peroxidase-like activity of water-soluble cupric oxide nanoparticles and its analytical application for detection of hydrogen peroxide and glucose. Analyst 137(7):1706–1712

    CAS  Google Scholar 

  • Chen X, Zhai N, Snyder JH, Chen QS, Liu PP, Jin LF, Zheng QX, Lin FC, Hu JM, Zhou HN (2015) Colorimetric detection of Hg2+ and Pb2+ based on peroxidase-like activity of graphene oxide-gold nanohybrids. Anal Methods 7(5):1951–1957

    CAS  Google Scholar 

  • Chuah LF, Klemeš JJ, Yusup S, Bokhari A, Akbar MM (2017) A review of cleaner intensification technologies in biodiesel production. J Clean Product 146:181–193

    CAS  Google Scholar 

  • Cui R, Han Z, Zhu J-J (2011) Helical carbon nanotubes: intrinsic peroxidase catalytic activity and its application for biocatalysis and biosensing. Chem Eur J 17(34):9377–9384

    CAS  Google Scholar 

  • Deng HH, Hong GL, Lin FL, Liu AL, Xia XH, Chen W (2016) Colorimetric detection of urea, urease, and urease inhibitor based on the peroxidase-like activity of gold nanoparticles. Anal Chim Acta 915:74–80

    CAS  Google Scholar 

  • Ding CP, Yan YH, Xiang DS, Zhang CL, Xian YZ (2016) Magnetic Fe3S4 nanoparticles with peroxidase-like activity, and their use in a photometric enzymatic glucose assay. Microchim Acta 183(2):625–631

    CAS  Google Scholar 

  • Dixon M, Webb EC (1964) Enzymes, 2nd edn. Academic Press, New York

    Google Scholar 

  • Dong W, Zhuang Y, Li S, Zhang X, Chai H, Huang Y (2018) High peroxidase-like activity of metallic cobalt nanoparticles encapsulated in metal–organic frameworks derived carbon for biosensing. Sens Actuator B Chem 255:2050–2057

    CAS  Google Scholar 

  • EBC (2019) EBC European biochar certificate—Guidelines for a sustainable production of biochar. Version 8.3E of 1st September 2019. http://www.european-biochar.org/en/download

  • El-Naggar A, El-Naggar AH, Shaheen SM, Sarkar B, Chang SX, Tsang DCW, Rinklebe J, Ok YS (2019a) Biochar composition-dependent impacts on soil nutrient release, carbon mineralization, and potential environmental risk: a review. J Environ Manag 241:458–467

    CAS  Google Scholar 

  • El-Naggar A, Lee SS, Rinklebe J, Farooq M, Song H, Sarmah AK, Zimmerman AR, Ahmad M, Shaheen SM, Ok YS (2019b) Biochar application to low fertility soils: a review of current status, and future prospects. Geoderma 337:536–554

    CAS  Google Scholar 

  • Fang GD, Gao J, Liu C, Dionysiou DD, Wang Y, Zhou DM (2014) Key role of persistent free radicals in hydrogen peroxide activation by biochar: implications to organic contaminant degradation. Environ Sci Technol 48(3):1902–1910

    CAS  Google Scholar 

  • Gao LZ, Zhuang J, Nie L, Zhang JB, Zhang Y, Gu N, Wang TH, Feng J, Yang DL, Perrett S, Yan X (2007) Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nature Nanotechnol 2(9):577–583

    CAS  Google Scholar 

  • Gao LZ, Giglio KM, Nelson JL, Sondermann H, Travis AJ (2014) Ferromagnetic nanoparticles with peroxidase-like activity enhance the cleavage of biological macromolecules for biofilm elimination. Nanoscale 6(5):2588–2593

    CAS  Google Scholar 

  • Garg B, Bisht T, Ling YC (2015) Graphene-based nanomaterials as efficient peroxidase mimetic catalysts for biosensing applications: an overview. Molecules 20(8):14155–14190

    CAS  Google Scholar 

  • Golchin J, Golchin K, Alidadian N, Ghaderi S, Eslamkhah S, Eslamkhah M, Akbarzadeh A (2017) Nanozyme applications in biology and medicine: an overview. Artif Cells Nanomed Biotechnol 45(6):1–8

    Google Scholar 

  • Guo YL, Liu XY, Yang CD, Wang XD, Wang D, Iqbal A, Liu WS, Qin WW (2015) Synthesis and peroxidase-like activity of cobalt@carbon-dots hybrid material. ChemCatChem 7(16):2467–2474

    CAS  Google Scholar 

  • Haider W, Hayat A, Raza Y, Chaudhry AA, Ihtesham Ur R, Marty JL (2015) Gold nanoparticle decorated single walled carbon nanotube nanocomposite with synergistic peroxidase like activity for d-alanine detection. RSC Adv 5(32):24853–24858

    CAS  Google Scholar 

  • Han L, Zeng LX, Wei MD, Li CM, Liu AH (2015) A V2O3-ordered mesoporous carbon composite with novel peroxidase-like activity towards the glucose colorimetric assay. Nanoscale 7(27):11678–11685

    CAS  Google Scholar 

  • Hayat A, Haider W, Raza Y, Marty JL (2015) Colorimetric cholesterol sensor based on peroxidase like activity of zinc oxide nanoparticles incorporated carbon nanotubes. Talanta 143:157–161

    CAS  Google Scholar 

  • Huang M, Gu JL, Elangovan SP, Li YS, Zhao WR, Iijima T, Yamazaki Y, Shi JL (2013) Intrinsic peroxidase-like catalytic activity of hydrophilic mesoporous carbons. Chem Lett 42(8):785–787

    CAS  Google Scholar 

  • Huang Y, Ren J, Qu X (2019) Nanozymes: classification, catalytic mechanisms, activity regulation, and applications. Chem Rev 119(6):4357–4412

    CAS  Google Scholar 

  • Jiang T, Song Y, Wei TX, Li H, Du D, Zhu MJ, Lin YH (2016) Sensitive detection of Escherichia coli O157:H7 using Pt–Au bimetal nanoparticles with peroxidase-like amplification. Biosens Bioelectron 77:687–694

    CAS  Google Scholar 

  • Jiao X, Song HJ, Zhao HH, Bai W, Zhang LC, Lv Y (2012) Well-redispersed ceria nanoparticles: promising peroxidase mimetics for H2O2 and glucose detection. Anal Methods 4(10):3261–3267

    CAS  Google Scholar 

  • Jv Y, Li BX, Cao R (2010) Positively-charged gold nanoparticles as peroxidase mimic and their application in hydrogen peroxide and glucose detection. Chem Commun 46(42):8017–8019

    Google Scholar 

  • Lee J, Kim K-H, Kwon EE (2017) Biochar as a catalyst. Renew Sust Energ Rev 77:70–79

    CAS  Google Scholar 

  • Li RM, Zhen MM, Guan MR, Chen DQ, Zhang GQ, Ge JC, Gong P, Wang CR, Shu CY (2013a) A novel glucose colorimetric sensor based on intrinsic peroxidase-like activity of C-60-carboxyfullerenes. Biosens Bioelectron 47:502–507

    CAS  Google Scholar 

  • Li X, Shen Q, Zhang D, Mei X, Ran W, Xu Y, Yu G (2013b) Functional groups determine biochar properties (pH and EC) as studied by two-dimensional 13C NMR correlation spectroscopy. PLoS One 8(6):e65949

    CAS  Google Scholar 

  • Li R, Huang H, Wang JJ, Liang W, Gao P, Zhang Z, Xiao R, Zhou B, Zhang X (2019) Conversion of Cu(II)-polluted biomass into an environmentally benign Cu nanoparticles-embedded biochar composite and its potential use on cyanobacteria inhibition. J Clean Prod 216:25–32

    CAS  Google Scholar 

  • Liu J-Z, Wang T-L, Ji L-N (2006) Enhanced dye decolorization efficiency by citraconic anhydride-modified horseradish peroxidase. J Mol Catal B Enzym 41(3–4):81–86

    CAS  Google Scholar 

  • Melnikova L, Pospiskova K, Mitroova Z, Kopcansky P, Safarik I (2014) Peroxidase-like activity of magnetoferritin. Microchim Acta 181(3–4):295–301

    CAS  Google Scholar 

  • Mu JS, Li J, Zhao X, Yang EC, Zhao XJ (2016) Cobalt-doped graphitic carbon nitride with enhanced peroxidase-like activity for wastewater treatment. RSC Adv 6(42):35568–35576

    CAS  Google Scholar 

  • Oliveira FR, Patel AK, Jaisi DP, Adhikari S, Lu H, Khanal SK (2017) Environmental application of biochar: current status and perspectives. Bioresour Technol 246:110–122

    CAS  Google Scholar 

  • Park JY, Jeong HY, Kim MI, Park TJ (2015) Colorimetric detection system for Salmonella typhimurium based on peroxidase-like activity of magnetic nanoparticles with DNA aptamers. J Nanomater 2015:2 (Article ID 527126)

    Google Scholar 

  • Peng FF, Zhang Y, Gu N (2008) Size-dependent peroxidase-like catalytic activity of Fe3O4 nanoparticles. Chin Chem Lett 19(6):730–733

    CAS  Google Scholar 

  • Peng YH, Wang ZY, Liu WS, Zhang HL, Zuo W, Tang HA, Chen FJ, Wang BD (2015) Size- and shape-dependent peroxidase-like catalytic activity of MnFe2O4 nanoparticles and their applications in highly efficient colorimetric detection of target cancer cells. Dalton Trans 44(28):12871–12877

    CAS  Google Scholar 

  • Qambrani NA, Rahman MM, Won S, Shim S, Ra C (2017) Biochar properties and eco-friendly applications for climate change mitigation, waste management, and wastewater treatment: a review. Renew Sust Energ Rev 79:255–273

    CAS  Google Scholar 

  • Qiao FM, Chen LJ, Li XN, Li LF, Ai SY (2014) Peroxidase-like activity of manganese selenide nanoparticles and its analytical application for visual detection of hydrogen peroxide and glucose. Sens Actuator B Chem 193:255–262

    CAS  Google Scholar 

  • Safarik I, Safarikova M (2014) One-step magnetic modification of non-magnetic solid materials. Int J Mater Res 105(1):104–107

    CAS  Google Scholar 

  • Safarik I, Maderova Z, Pospiskova K, Schmidt HP, Baldikova E, Filip J, Krizek M, Malina O, Safarikova M (2016) Magnetically modified biochar for organic xenobiotics removal. Water Sci Technol 74(7):1706–1715

    CAS  Google Scholar 

  • Safavi A, Sedaghati F, Shahbaazi H, Farjami E (2012) Facile approach to the synthesis of carbon nanodots and their peroxidase mimetic function in azo dyes degradation. RSC Adv 2(19):7367–7370

    CAS  Google Scholar 

  • Sewu DD, Boakye P, Woo SH (2017) Highly efficient adsorption of cationic dye by biochar produced with Korean cabbage waste. Bioresour Technol 224:206–213

    CAS  Google Scholar 

  • Sharma B, Dangi AK, Shukla P (2018) Contemporary enzyme based technologies for bioremediation: a review. J Environ Manag 210:10–22

    CAS  Google Scholar 

  • Singh B, Fang Y, Cowie BCC, Thomsen L (2014) NEXAFS and XPS characterisation of carbon functional groups of fresh and aged biochars. Org Geochem 77:1–10

    CAS  Google Scholar 

  • Song Y, Qu K, Zhao C, Ren J, Qu X (2010) Graphene oxide: intrinsic peroxidase catalytic activity and its application to glucose detection. Adv Mater 22(19):2206–2210

    CAS  Google Scholar 

  • Sun HY, Jiao XL, Han YY, Jiang Z, Chen DR (2013) Synthesis of Fe3O4–Au nanocomposites with enhanced peroxidase-like activity. Eur J Inorg Chem 1:109–114

    CAS  Google Scholar 

  • Sun HJ, Zhao AD, Gao N, Li K, Ren JS, Qu XG (2015) Deciphering a nanocarbon-based artificial peroxidase: chemical identification of the catalytically active and substrate-binding sites on graphene quantum dots. Angew Chem Int Edit 54(24):7176–7180

    CAS  Google Scholar 

  • Sun H, Zhou Y, Ren J, Qu X (2018) Carbon nanozymes: enzymatic properties, catalytic mechanism, and applications. Angew Chem Int Edit 57(30):9224–9237

    CAS  Google Scholar 

  • Tian ZM, Li J, Zhang ZY, Gao W, Zhou XM, Qu YQ (2015) Highly sensitive and robust peroxidase-like activity of porous nanorods of ceria and their application for breast cancer detection. Biomaterials 59:116–124

    CAS  Google Scholar 

  • Trazzi PA, Leahy JJ, Hayes MHB, Kwapinski W (2016) Adsorption and desorption of phosphate on biochars. J Environ Chem Eng 4(1):37–46

    CAS  Google Scholar 

  • Ulson de Souza SMAG, Forgiarini E, Ulson de Souza AA (2007) Toxicity of textile dyes and their degradation by the enzyme horseradish peroxidase (HRP). J Hazard Mater 147(3):1073–1078

    CAS  Google Scholar 

  • Varma RS (2016) Greener and sustainable trends in synthesis of organics and nanomaterials. ACS Sustain Chem Eng 4:5866–5878

    CAS  Google Scholar 

  • Wan D, Li WB, Wang GH, Wei XB (2016) Shape-controllable synthesis of peroxidase-like Fe3O4 nanoparticles for catalytic removal of organic pollutants. J Mater Eng Perform 25(10):4333–4340

    CAS  Google Scholar 

  • Wang S, Chen W, Liu AL, Hong L, Deng HH, Lin XH (2012a) Comparison of the peroxidase-like activity of unmodified, amino-modified, and citrate-capped gold nanoparticles. ChemPhysChem 13(5):1199–1204

    CAS  Google Scholar 

  • Wang W, Jiang XP, Chen KZ (2012b) Iron phosphate microflowers as peroxidase mimic and superoxide dismutase mimic for biocatalysis and biosensing. Chem Commun 48(58):7289–7291

    CAS  Google Scholar 

  • Wang RZ, Huang DL, Liu YG, Zhang C, Lai C, Wang X, Zeng GM, Gong XM, Duan A, Zhang Q, Xu P (2019) Recent advances in biochar-based catalysts: properties, applications and mechanisms for pollution remediation. Chem Eng J 371:380–403

    CAS  Google Scholar 

  • Wei H, Wang EK (2013) Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes. Chem Soc Rev 42(14):6060–6093

    CAS  Google Scholar 

  • Wu XC, Zhang Y, Han T, Wu HX, Guo SW, Zhang JY (2014) Composite of graphene quantum dots and Fe3O4 nanoparticles: peroxidase activity and application in phenolic compound removal. RSC Adv 4(7):3299–3305

    CAS  Google Scholar 

  • Wu J, Wang X, Wang Q, Lou Z, Li S, Zhu Y, Qin L, Wei H (2019) Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes (II). Chem Soc Rev 48:1004–1076

    CAS  Google Scholar 

  • Xie JX, Cao HY, Jiang H, Chen YJ, Shi WB, Zheng HZ, Huang YM (2013) Co3O4-reduced graphene oxide nanocomposite as an effective peroxidase mimetic and its application in visual biosensing of glucose. Anal Chim Acta 796:92–100

    CAS  Google Scholar 

  • Yu YZ, Ju P, Zhang D, Han XX, Yin XF, Zheng L, Sun CJ (2016) Peroxidase-like activity of FeVO4 nanobelts and its analytical application for optical detection of hydrogen peroxide. Sens Actuator B Chem 233:162–172

    CAS  Google Scholar 

  • Zhang Y, Xu C, Li B (2013) Self-assembly of hemin on carbon nanotube as highly active peroxidase mimetic and its application for biosensing. RSC Adv 3(17):6044–6050

    CAS  Google Scholar 

  • Zhang K, Zuo W, Wang ZY, Liu J, Li TR, Wang BD, Yang ZY (2015) A simple route to CoFe2O4 nanoparticles with shape and size control and their tunable peroxidase-like activity. RSC Adv 5(14):10632–10640

    CAS  Google Scholar 

  • Zheng AX, Zhang XL, Gao J, Liu XL, Liu JF (2016) Peroxidase-like catalytic activity of copper ions and its application for highly sensitive detection of glypican-3. Anal Chim Acta 941:87–93

    CAS  Google Scholar 

  • Zhu WF, Zhang J, Jiang ZC, Wang WW, Liu XH (2014) High-quality carbon dots: synthesis, peroxidase-like activity and their application in the detection of H2O2, Ag+ and Fe3+. RSC Adv 4(33):17387–17392

    CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the Ministry of the Interior of the Czech Republic (Project No. VI20162019017) and by the ERDF projects “New Composite Materials for Environmental Applications” (No. CZ.02.1.01/0.0/0.0/17_048/0007399) and “Development of pre-applied research in nanotechnology and biotechnology” (No. CZ.02.1.01/0.0/0.0/17_048/0007323).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ivo Safarik or Kristyna Pospiskova.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 279 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Safarik, I., Prochazkova, J., Baldikova, E. et al. Biochars and their magnetic derivatives as enzyme-like catalysts mimicking peroxidases. Biochar 2, 121–134 (2020). https://doi.org/10.1007/s42773-020-00035-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42773-020-00035-5

Keywords

Navigation