Skip to main content
Log in

Large Non-ergodic Magnetoelastic Damping in Ni–Mn–Ga Austenite

  • ICFSMA 2019
  • Published:
Shape Memory and Superelasticity Aims and scope Submit manuscript

Abstract

Resonant ultrasound spectroscopy was used to analyze magnetoelastic damping in Ni–Mn–Ga single crystals in austenite and premartensite phases. Crystals with different treatment were studied, exhibiting different density of antiphase boundaries (APBs), as confirmed by magnetic force microscopy, and different magnetic behavior. For a quenched single crystal with high density of APBs, extremely strong damping was observed in a broad temperature range in the austenite phase. It was shown that this damping is history-dependent, i.e., non-ergodic, appearing only during heating runs preceded by a premartensite → austenite transition. We suggest that this non-ergodicity results from the pinning of the fine magnetic domain structure on APBs and other defects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Straka L, Heczko O, Seiner H, Lanska N, Drahokoupil J, Soroka A, Fähler S, Hänninen H, Sozinov A (2011) Highly mobile twinned interface in 10 M modulated Ni–Mn–Ga martensite: analysis beyond the tetragonal approximation of lattice. Acta Mater 59:7450–7463

    Article  CAS  Google Scholar 

  2. Sozinov A, Lanska N, Soroka A, Straka L (2011) Highly mobile type II twin boundary in Ni–Mn–Ga five-layered martensite. Appl Phys Lett 99:124103

    Article  Google Scholar 

  3. Sozinov A, Musiienko D, Saren A, Veřtát P, Straka L, Heczko O, Zelený M, Chulist R, Ullakko K (2020) Highly mobile twin boundaries in seven-layer modulated Ni–Mn–Ga–Fe martensite. Scr Mater 178:62–66

    Article  CAS  Google Scholar 

  4. Liu J, Gottschall T, Skokov KP, Moore JD, Gutfleisch O (2012) Giant magnetocaloric effect driven by structural transitions. Nat Mater 11:620–626

    Article  CAS  Google Scholar 

  5. Planes A, Obradó E, Gonzàlez-Comas A, Mañosa L (1997) Premartensitic transition driven by magnetoelastic interaction in bcc ferromagnetic Ni2-Mn–Ga. Phys Rev Lett 79(20):3926–3929

    Article  CAS  Google Scholar 

  6. Nie ZH, Ren Y, Wang YD, Liu DM, Brown DE, Wang G, Zuo L (2010) Strain-induced dimensionality crossover and associated pseudoelasticity in the premartensitic phase of Ni2 MnGa. Appl Phys Lett 97(17):171905

    Article  Google Scholar 

  7. Seiner H, Kopecký V, Landa M, Heczko O (2014) Elasticity and magnetism of Ni2 MnGa premartensitic tweed. Phys Status Solid B 251(10):2097–2103

    Article  CAS  Google Scholar 

  8. Zhou L, Schneider MM, Giri A, Cho K, Sohn Y (2017) Microstructural and crystallographic characteristics of modulated martensite, non-modulated martensite, and pre-martensitic tweed austenite in Ni–Mn–Ga alloys. Acta Mater 134:93–103

    Article  CAS  Google Scholar 

  9. Tsuchiya K, Nakamura H, Ohtoyo D, Nakayama H, Umemoto M, Ohtsuka H (2001) Phase transformation and microstructures in Ni–Mn–Ga ferromagnetic shape memory alloys. J. Phys. IV 11(8):8263–8268

    Google Scholar 

  10. Venkateswaran SP, Nuhfer NT, De Graef M (2007) Anti-phase boundaries and magnetic domain structures in Ni2MnGa-type Heusler alloys. Acta Mater 55(8):2621–2636

    Article  CAS  Google Scholar 

  11. De Graef M (2009) Recent progress in Lorentz Transmission ElectronMicroscopy (applications to multi-ferroic materials). In: Šittner P, Heller L, Paidar V (eds) ESOMAT 2009: 8th European symposium on martensitic transformations, Art.No. 01002, EDP Sciences, Paris

  12. Vronka M, Heczko O, De Graef M (2019) Influence of antiphase and ferroelastic domain boundaries on ferromagnetic domain wall width in multiferroic Ni–Mn–Ga compound. Appl Phys Lett 115(3):032401

    Article  Google Scholar 

  13. Straka L, Fekete L, Rames M, Belas E, Heczko O (2019) Magnetic coercivity control by heat treatment in Heusler Ni–M–Ga(-B) single crystals. Acta Mater 169:109–121

    Article  CAS  Google Scholar 

  14. Budruk A, Phatak C, Petford-Long A, De Graef M (2011) In situ Lorentz TEM magnetization study of a Ni–Mn–Ga ferromagnetic shape memory alloy. Acta Mater 59(12):4895–4906

    Article  CAS  Google Scholar 

  15. Seiner H, Sedlák P, Bodnárová L, Drahokoupil J, Kopecký V, Kopeček J, Landa M, Heczko O (2013) The effect of antiphase boundaries on the elastic properties of Ni–Mn–Ga austenite and premartensite. J Phys Condens Matter 25(42):425402

    Article  Google Scholar 

  16. Zhao P, Dai L, Cullen J, Wuttig M (2007) Magnetic and elastic properties of Ni490Mn235Ga275 premartensite. Metal. Mater. Trans. A 38(4):745–751

    Article  Google Scholar 

  17. Kustov S, Rosselló J, Corró ML, Kaminskii V, Sapozhnikov K, Saren A, Sozinov A, Ullakko K (2019) Magnetic domain walls and macroscopic magnetization-related elastic and anelastic effects during premartensitic transition in Ni2MnGa. Materials 12(3):376

    Article  CAS  Google Scholar 

  18. Ren X, Wang Y, Zhou Y, Zhang Z, Wang D, Fan G, Otsuka K, Suzuki T, Ji Y, Zhang J, Tian Y, Hou S, Ding X (2010) Strain glass in ferroelastic systems: Premartensitic tweed versus strain glass. Philos Mag 90(1–4):141–157

    Article  CAS  Google Scholar 

  19. Ishimoto M, Numakura H, Wuttig M (2006) Magnetoelastic damping in Fe–Ga solid-solution alloys. Mater. Sci. Eng. A 442(1–2):195–198

    Article  Google Scholar 

  20. Masumoto H, Sawaya S, Hinai M (1977) Damping capacity of Fe–Mo alloys. Trans Jpn Inst Met 18:581–584

    Article  CAS  Google Scholar 

  21. Masumoto H, Sawaya S, Hinai M (1978) Damping capacity of Gentalloy in the Fe–Co alloys. Trans Jpn Inst Met 19(6):312–316

    Article  CAS  Google Scholar 

  22. Migliori A, Sarrao JL, Visscher WM, Bell TM, Lei M, Fisk Z, Leisure RG (1993) Resonant ultrasound spectroscopic techniques for measurement of the elastic moduli of solids. Phys B 183(1–2):1–24

    Article  CAS  Google Scholar 

  23. Leisure RG, Willis FA (1997) Resonant ultrasound spectroscopy. J Phys Condens Matter 9(28):6001–6029

    Article  CAS  Google Scholar 

  24. Sedlák P, Seiner H, Zídek J, Janovská M, Landa M (2014) Determination of all 21 independent elastic coefficients of generally anisotropic solids by resonant ultrasound spectroscopy: benchmark examples. Exp Mech 54(6):1073–1085

    Article  Google Scholar 

  25. Heczko O, Seiner H, Sedlák P, Kopeček J, Kopecký V, Landa M (2013) Resonant ultrasound spectroscopy: a tool to probe magneto-elastic properties of ferromagnetic shape memory alloys. Eur Phys J B 86(2):62

    Article  Google Scholar 

  26. Seiner H, Sedlák P, Koller M, Landa M, Ramírez C, Osendi MI, Belmonte M (2013) Anisotropic elastic moduli and internal friction of graphene nanoplatelets/silicon nitride composites. Compos Sci Technol 75:93–97

    Article  CAS  Google Scholar 

  27. Straka L, Fekete L, Heczko O (2018) Antiphase boundaries in bulk Ni–Mn–Ga Heusler alloy observed by magnetic force microscopy. Appl Phys Lett 113(17):172901

    Article  Google Scholar 

  28. Vronka M, Straka L, De Graef M, Heczko O (2020) Antiphase boundaries, magnetic domains, and magnetic vortices in Ni–Mn–Ga single crystals. Acta Mater 184:179–186

    Article  CAS  Google Scholar 

  29. Heczko O, Kopeček J, Majtás D, Landa M (2011) Magnetic and magnetoelastic properties of Ni–Mn–Ga: do they need a revision? J Phys 303:012081

    Google Scholar 

  30. Tickle R, James RD (1999) Magnetic and magnetomechanical properties of Ni2MnGa. J Magn Magn Mater 195(3):627–638

    Article  CAS  Google Scholar 

  31. Bozorth RM (1953) The permalloy problem. Rev Mod Phys 25:42–48

    Article  CAS  Google Scholar 

  32. Herzer G (1992) Nanocrystalline soft magnetic materials. J Magn Magn Mater 112:258–262

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Czech Science Foundation, Project No. 17-00062S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oleg Heczko.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bodnárová, L., Sedlák, P., Heczko, O. et al. Large Non-ergodic Magnetoelastic Damping in Ni–Mn–Ga Austenite . Shap. Mem. Superelasticity 6, 89–96 (2020). https://doi.org/10.1007/s40830-020-00272-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40830-020-00272-4

Keywords

Navigation